Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2020, Vol. 1(1) 69-81

Determination of Artificial Incubation Time of Some Malawi Cichlid Species Incubating in the Mouth (Iodotropheus sprengerae, Cyrtocara moorii, Maylandia estherae, Labidochromis caeruleus) Eggs  

Pınar Çelik & Bahadır Rıfat Yalçın

pp. 69 - 81   |  DOI: https://doi.org/10.29329/actanatsci.2020.313.9   |  Manu. Number: MANU-2009-30-0004.R1

Published online: December 31, 2020  |   Number of Views: 183  |  Number of Download: 813


Abstract

Malawi cichlid species belonging to the Cichlidae family are among the most popular commercial species in the aquarium industry. Females of this species begin to incubate their eggs in the mouth after ovulation. Professional producers continue to induce vomiting of the eggs from the female's mouth at many different times and grow them with artificial incubation. The aim of this study is to determine the most appropriate time to induce vomiting and artificial incubation of eggs of these species. For this purpose, rusty cichlid (Iodotropheus sprengerae), blue dolphin cichlid (Cyrtocara moorii), red zebra cichlid (Maylandia estherae) and electric yellow cichlid (Labidochromis caeruleus) were produced in colonies. The development of eggs and larvae obtained from broodstocks were observed. Critical times for cichlid culture have been determined. While electric yellow cichlid (L. caeruleus) completed its embryonic development on the 3rd day after ovulation, blue dolphin cichlid (C. moorii) and red zebra cichlid (M. estherae) species completed on the 4th day, rusty cichlid (I. sprengerae) completed on the 5th day. Therefore, the results of the present study revealed that it is not appropriate to apply the same incubation technique to all these species.

 

 

 

Keywords: Ornamental fish, Cichlidae, Malawi cichlid species, Hatching


How to Cite this Article?

APA 6th edition
Celik, P. & Yalcin, B.R. (2020). Determination of Artificial Incubation Time of Some Malawi Cichlid Species Incubating in the Mouth (Iodotropheus sprengerae, Cyrtocara moorii, Maylandia estherae, Labidochromis caeruleus) Eggs   . Acta Natura et Scientia, 1(1), 69-81. doi: 10.29329/actanatsci.2020.313.9

Harvard
Celik, P. and Yalcin, B. (2020). Determination of Artificial Incubation Time of Some Malawi Cichlid Species Incubating in the Mouth (Iodotropheus sprengerae, Cyrtocara moorii, Maylandia estherae, Labidochromis caeruleus) Eggs   . Acta Natura et Scientia, 1(1), pp. 69-81.

Chicago 16th edition
Celik, Pinar and Bahadir Rifat Yalcin (2020). "Determination of Artificial Incubation Time of Some Malawi Cichlid Species Incubating in the Mouth (Iodotropheus sprengerae, Cyrtocara moorii, Maylandia estherae, Labidochromis caeruleus) Eggs   ". Acta Natura et Scientia 1 (1):69-81. doi:10.29329/actanatsci.2020.313.9.

References
  1. Evers, H.‐G., Pinnegar, J. K., & Taylor, M. I. (2019). Where are they all from? – Sources and sustainability in the ornamental freshwater fish trade. Journal of Fish Biology, 94(6), 909–916. https://doi.org/10.1111/jfb.13930 [Google Scholar] [Crossref] 
  2. Farias, I. P., Ortí, G., & Meyer, A. (2000). Total evidence: molecules, morphology and the phylogenetics of cichlids fishes. Journal of Experimental Zoology, 288(1), 76–92. https://doi.org/10.1002/(SICI)1097-010X(20000 415)288:1%3C76::AID-JEZ8%3E3.0.CO;2-P [Google Scholar] [Crossref] 
  3. Fryer, G., & Iles, T. D. (1972). The cichlid fishes of the Great Lakes of Africa: Their biology and evolution. Edinburgh: Oliver & Boyd. [Google Scholar]
  4. Gilbert, S. F., & Bolker, J. A. (2003). Ecological developmental biology: preface to the symposium. Evolution & Development, 5, 3–8. https://doi.org/10.1046/j.1525-142X.2003.0300 2.x [Google Scholar] [Crossref] 
  5. Henning, F., & Meyer, A. (2014). The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annual Review of Genomics and Human Genetics, 15, 1–516. https://doi.org/10.1146/ annurev-genom-090413-025412 [Google Scholar] [Crossref] 
  6. Kornfield, I., & Smith, P. F. (2000). African cichlid fishes: model systems for evolutionary biology. Annual Review of Ecology and Systematics, 31, 163–196. https://doi.org/10.1146/annurev. ecolsys.31.1.163 [Google Scholar] [Crossref] 
  7. Koumoundouros, G., Divanach, P., & Kentouri, M. (1999). Ontogeny and allometric plasticity of Dentex dentex (Osteichthyes: sparidae) in rearing conditions. Marine Biology, 135, 561–572. https://doi.org/10.1007/s002270050657 [Google Scholar] [Crossref] 
  8. Kratochwil, C. F., & Meyer, A. (2015). Closing the genotype – phenotype gap: emerging Technologies for evolutionary genetics in ecological model vertebrate systems. Bioessays, 37, 213–226. https://doi.org/10.1002/ bies.201400142 [Google Scholar] [Crossref] 
  9. Kratochwil, C. F., Sefton, M. M., & Meyer, A. (2015). Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): A new evo-devo model for the investigation of adaptive novelties and species differences. BMC Developmental Biology, 15, 12. https://doi.org/ 10.1186/s12861-015-0061-1 [Google Scholar] [Crossref] 
  10. Meijide, F. J., & Guerrero, G. A. (2000). Embryonic and larval development of a substratebrooding cichlid Cichlasoma dimerus (Heckel 1840) under laboratory conditions. Journal of Zoology, 252, 481–493. https://doi.org/10.1111/j.1469-7998.2000.tb012 31.x [Google Scholar] [Crossref] 
  11. Meyer, A. (1986). Changes in behavior with increasing experience with a novel prey in fry of the Central American cichlid, Cichlasoma managuense (Teleostei: Cichlidae). Behaviour, 98, 145–167. [Google Scholar]
  12. Meyer, A. (1987). Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution, 41, 1357–1369. [Google Scholar]
  13. Meyer, A. (1988). Plasticity in morphology and performance in the trophically polymorphic cichlid fish Cichlasoma citrinellum. [PhD Thesis, University of California, Berkeley, CA]. [Google Scholar]
  14. Meyer, A. (1993). Phylogenetic relationships and evolutionary processes in east-African cichlid fishes. Trends in Ecology and Evolution, 8, 279–284. https://doi.org/10.1016/0169-5347(93) 90255-N [Google Scholar] [Crossref] 
  15. Meyer, A., Kocher, T. D., & Wilson, A. C. (1991). African fishes – a replay. Nature, 351, 467–468. [Google Scholar]
  16. Saemi‐Komsari, M., Mousavi‐Sabet, H., Kratochwil, C. F., Sattari, M., Eagderi, S., & Meyer, A. (2018). Early developmental and allometric patterns in the electric yellow cichlid Labidochromis caeruleu. Journal of Fish Biology, 92(6), 1888–1901. https://doi.org/10.1111/jfb.13627 [Google Scholar] [Crossref] 
  17. Salzburger, W., & Meyer, A. (2004). The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften, 91, 277–290. https://doi.org/10.1007/s00114-004-0528-6 [Google Scholar] [Crossref] 
  18. Snoeks, J. (2000). How well known is the ichthyodiversity of the large East African lakes? Advances in Ecological Research, 31, 17–38. https://doi.org/10.1016/S0065-2504(00)31005-4 [Google Scholar] [Crossref] 
  19. Sturmbauer, C., & Meyer, A. (1992). Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature, 359, 578–581. [Google Scholar]
  20. Turner, G. F., Seehausen, O., Knight, M. E., Allender, C. J., & Robinson, R. L. (2001). How many cichlid fishes are there in African Lakes? Molecular Ecology, 10, 793–806. https://doi.org/10.1046/j.1365-294x.2001.0120 0.x [Google Scholar] [Crossref] 
  21. van Maaren, C. C., & Daniels, H. V. (2000). A practical guide to the morphological development of southern flounder, Paralichthys lethostigma, from hatch through metamorphosis. Journal of Applied Aquaculture, 10, 1–9. https://doi.org/10.1300/ J028v10n02_01 [Google Scholar] [Crossref]