Research article    |    Open Access
Acta Natura et Scientia 2025, Vol. 6(2) 92-101

Impact of Zeta Potential on Copper Adsorption of Surface-Modified Hydroxyapatites Derived From Fish Bone Waste

Bayram Kızılkaya

pp. 92 - 101   |  DOI: https://doi.org/10.61326/actanatsci.v6i2.393

Publish Date: September 22, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Zeta potential emerges as a crucial parameter in understanding particle surface charges and assessing the stability of colloidal systems. It also serves as a key indicator in determining electrostatic interactions between surfaces and ions. In this study, hydroxyapatite (HA) derived from fish waste was functionalized with histidine (HA4) and 4-Aminohippuric acid (HA5), and their surface properties and heavy metal ion (Cu2+) adsorption capacities were investigated. Zeta potential measurements performed after surface modification showed that both modifications induced a negative charge on the surface. The surface modified with histidine exhibited a zeta potential in the range of -3.48 to -5.09 mV, while the surface modified with 4-Aminohippuric acid demonstrated a higher negative charge. Adsorption experiments revealed that HA5 exhibited a superior Cu2+ binding capacity of 9.96 mg/g compared to HA4 (9.52 mg/g). The findings indicate that zeta potential and the presence of functional groups on the surface play a significant role in the retention of heavy metal ions. These results suggest that modified fish bone surfaces can serve as effective and sustainable adsorbents for environmental applications.

Keywords: Fish bone, Zeta potential, Adsorption, Copper


How to Cite this Article?

APA 7th edition
Kizilkaya, B. (2025). Impact of Zeta Potential on Copper Adsorption of Surface-Modified Hydroxyapatites Derived From Fish Bone Waste. Acta Natura et Scientia, 6(2), 92-101. https://doi.org/10.61326/actanatsci.v6i2.393

Harvard
Kizilkaya, B. (2025). Impact of Zeta Potential on Copper Adsorption of Surface-Modified Hydroxyapatites Derived From Fish Bone Waste. Acta Natura et Scientia, 6(2), pp. 92-101.

Chicago 16th edition
Kizilkaya, Bayram (2025). "Impact of Zeta Potential on Copper Adsorption of Surface-Modified Hydroxyapatites Derived From Fish Bone Waste". Acta Natura et Scientia 6 (2):92-101. https://doi.org/10.61326/actanatsci.v6i2.393

References
  1. Anielak, A. M., & Grzegorczuk-Nowacka, M. (2011). Significance of zeta potential in the adsorption of fulvic acid on aluminum oxide and activated carbon. Polish Journal of Environmental Studies, 20(6), 1381-1386. [Google Scholar]
  2. Danaei, M., Kalantari, M., Raji, M., Samareh Fekri, H., Saber, R., Asnani, G. P., Mortazavi, S. M., Mozafari, M. R., Rasti, B., & Taheriazam, A. (2018). Probing nanoliposomes using single particle analytical techniques: Effect of excipients, solvents, phase transition and zeta potential. Heliyon, 4(12), e01088. https://doi.org/10.1016/j.heliyon.2018.e01088 [Google Scholar] [Crossref] 
  3. Dehkordi, M. M., Nodeh, Z. P., Dehkordi, K. S., Salmanvandi, H., Khorjestan, R. R., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 23, 102729. https://doi.org/10.1016/j.rineng.2024.102729 [Google Scholar] [Crossref] 
  4. Duta, L., Dorcioman, G., & Grumezescu, V. (2021). A review on biphasic calcium phosphate materials derived from fish discards. Nanomaterials, 11(11), 2856. https://doi.org/10.3390/nano11112856 [Google Scholar] [Crossref] 
  5. Gherman, I.-E., Lakatos, E.-S., Clinci, S. D., Lungu, F., Constandoiu, V. V., Cioca, L. I., & Rada, E. C. (2023). Circularity outlines in the construction and demolition waste management: A literature review. Recycling, 8(5), 69. https://doi.org/10.3390/recycling8050069 [Google Scholar] [Crossref] 
  6. Ghulam, S. T., & Abushammala, H. (2023). Challenges and opportunities in the management of electronic waste and its impact on human health and environment. Sustainability, 15(3), 1837. https://doi.org/10.3390/su15031837 [Google Scholar] [Crossref] 
  7. Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. Environmental Challenges, 13, 100747. https://doi.org/10.1016/j.envc.2023.100747 [Google Scholar] [Crossref] 
  8. Holeček, M. (2020). Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients, 12(3), 848. https://doi.org/10.3390/nu12030848 [Google Scholar] [Crossref] 
  9. Khani, O., Mohammadi, M., Khaz’ali, A. R., & Aghdam, M. A. (2025). Effect of pH value and zeta potential on the stability of CO2 foam stabilized by SDS surfactant and SiO2, ZnO and Fe2O3 nanoparticles. Scientific Reports, 15, 10302. https://doi.org/10.1038/s41598-025-94639-1 [Google Scholar] [Crossref] 
  10. Kizilkaya, B., & Tekinay, A. A. (2011). Comparative study and removal of Co and Ni (II) ions from aqueous solutions using fish bones. Science of Advanced Materials, 3(6), 949–961. https://doi.org/10.1166/sam.2011.1222 [Google Scholar] [Crossref] 
  11. Kızılkaya, B., Ormancı, H. B., Öztekin, A., Tan, E., Ucyol, N., Türker, G., Tekinay, A. A., & Bilici, A. (2015). An application on fish bones by chemical modification of histidine as amino acid. Marine Science and Technology Bulletin, 4(1), 19–23. [Google Scholar]
  12. Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1–2), 37–47. https://doi.org/10.1016/j.desal.2010.06.076 [Google Scholar] [Crossref] 
  13. Kurama, H. (2023). A brief overview to solid waste treatment & recent practice of Turkey. Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University, 31(4), 1045-1059. https://doi.org/10.31796/ogummf.1374306 [Google Scholar] [Crossref] 
  14. Martins, J. R., Rocha, J. C., Novais, R. M., Labrincha, J. A., Hotza, D., & Senff, L. (2025). Zeta potential in cementitious systems: A comprehensive overview of influencing factors and implications on material properties. Journal of Building Engineering, 99, 111556. https://doi.org/10.1016/j.jobe.2024.111556 [Google Scholar] [Crossref] 
  15. Marzun, G., Streich, C., Jendrzej, S., Barcikowski, S., & Wagener, P. (2014). Adsorption of colloidal platinum nanoparticles to supports: charge transfer and effects of electrostatic and steric interactions. Langmuir, 30(40), 11928–11936. https://doi.org/10.1021/la502588g [Google Scholar] [Crossref] 
  16. Mishra, R. K., Mentha, S. S., Misra, Y., & Dwivedi, N. (2023). Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus, 6, 74–95. https://doi.org/10.1016/j.wen.2023.08.002 [Google Scholar] [Crossref] 
  17. Mondal, S., Park, S., Choi, J., Vu, T. T. H., Doan, V. H. M., Vo, T. T., Lee, B., & Oh, J. (2023). Hydroxyapatite: A journey from biomaterials to advanced functional materials. Advances in Colloid and Interface Science, 321, 103013. https://doi.org/10.1016/j.cis.2023.103013 [Google Scholar] [Crossref] 
  18. Mujtaba, M., Fraceto, L. F., Fazeli, M., Mukherjee, S., Savassa, S. M., Medeiros, G. A. de, Pereira, A. do E. S., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815 [Google Scholar] [Crossref] 
  19. Özkara, A., & Akyıl, D. (2019). Environmental pollution and pollutants on the ecosystem: A review. Turkish Journal of Scientific Reviews, 11(2), 11–17. [Google Scholar]
  20. Petrovic, B., Gorbounov, M., & Soltani, S. M. (2022). Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents. Carbon Capture Science & Technology, 3, 100045. https://doi.org/10.1016/j.ccst.2022.100045 [Google Scholar] [Crossref] 
  21. Pochapski, D. J., Santos, C. C. D., Leite, G. W., Pulcinelli, S. H., & Santilli, C. V. (2021). Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results. Langmuir, 37(45), 13379–13389. https://doi.org/10.1021/acs.langmuir.1c02056 [Google Scholar] [Crossref] 
  22. Rodriguez-Loya, J., Lerma, M., & Gardea-Torresdey, J. L. (2023). Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: A review. Micromachines, 15(1), 24. https://doi.org/10.3390/mi15010024 [Google Scholar] [Crossref] 
  23. Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M., & Ávila, P. (2023). Zeta potential as a tool for functional materials development. Catalysis Today, 423, 113862. https://doi.org/10.1016/j.cattod.2022.08.004 [Google Scholar] [Crossref] 
  24. Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(43), 58514–58536. https://doi.org/10.1007/s11356-022-21578-z [Google Scholar] [Crossref] 
  25. Tan, E., Kizilkaya, B., Ucyol, N., Ormanci, H. B., & Oral, A. (2014). Surface modification with [Google Scholar]
  26. P-aminohippuric acid on biogenic apatite (fish bones) particles. Marine Science and Technology Bulletin, 3(2), 45–50. [Google Scholar]
  27. Wang, Y., Yuan, Z., & Tang, Y. (2021). Enhancing food security and environmental sustainability: A critical review of food loss and waste management. Resources, Environment and Sustainability, 4, 100023. https://doi.org/10.1016/j.resenv.2021.100023 [Google Scholar] [Crossref] 
  28. Xu, G., Zhang, J., & Song, G. (2003). Effect of complexation on the zeta potential of silica powder. Powder Technology, 134(3), 218–222. https://doi.org/10.1016/s0032-5910(03)00172-4 [Google Scholar] [Crossref]