Research article    |    Open Access
Acta Natura et Scientia 2025, Vol. 6(2) 187-197

Effect of Spraying Sulfur and Inoculation Rhizobacteria on Growth and Yield of Canola

Sara Abdekhaleghi, Khosro Mohammadi, Babak Pasari, Asad Rokhzadi

pp. 187 - 197   |  DOI: https://doi.org/10.61326/actanatsci.v6i2.365

Publish Date: December 12, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Due to the increasing importance of using environmentally friendly methods to increase the yield of crops, two- year experiment carried out in a field located in the Dehgolan region, in the northwest of Iran, to study influence of sulfur spraying and plant growth promoting rhizobacteria inoculation on canola traits. The experiment was arranged as a split-plot factorial arrangement based on randomized complete block design with three replications. The main plots included two levels of sulfur (control and application), and the factorial combinations of strigolactone (control and application) and microorganisms (control, Funneliformis mosseae, Bacillus lentus, Pseudomonas fluorescens, Thiobacillus sp.) were allocated to the sub-plots. The results of combined analysis showed that the 1000 seed weights and seed yield increased significantly by sulfur application. At the same time, the 1000 seed weights decreased under the influence of strigolactone. Also, the SPAD number, the number of pods and seeds per plant, the 1000 seed weights and the seed yield increased significantly by influence of microorganisms, especially Thiobacillus, compared to control treatment. Based on the results of interaction effects, all traits except the number of SPAD were affected by the interaction effect of sulfur, strigolactone and microorganisms. The application of sulfur along with strigolactone and Thiobacillus significantly increased the number of pods per plant (200), the 1000 seed weights (4.53 g) and the seed yield (2552 kg/ha).

Keywords: Canola, Microorganisms, Sulfur


How to Cite this Article?

APA 7th edition
Abdekhaleghi, S., Mohammadi, K., Pasari, B., & Rokhzadi, A. (2025). Effect of Spraying Sulfur and Inoculation Rhizobacteria on Growth and Yield of Canola. Acta Natura et Scientia, 6(2), 187-197. https://doi.org/10.61326/actanatsci.v6i2.365

Harvard
Abdekhaleghi, S., Mohammadi, K., Pasari, B. and Rokhzadi, A. (2025). Effect of Spraying Sulfur and Inoculation Rhizobacteria on Growth and Yield of Canola. Acta Natura et Scientia, 6(2), pp. 187-197.

Chicago 16th edition
Abdekhaleghi, Sara, Khosro Mohammadi, Babak Pasari and Asad Rokhzadi (2025). "Effect of Spraying Sulfur and Inoculation Rhizobacteria on Growth and Yield of Canola". Acta Natura et Scientia 6 (2):187-197. https://doi.org/10.61326/actanatsci.v6i2.365

References
  1. Alvi, A. F., Sehar, Z., Fatma, M., Masood, A., & Khan, N. A. (2022). Strigolactone: An emerging growth regulator for developing resilience in plants. Plants, 11(19), 2604. https://doi.org/10.3390/plants11192604 [Google Scholar] [Crossref] 
  2. Asadi Rahmani, H., Khavazi Jahandideh, K., Mahjen Abadi, V. A., Ramezanpour, M. R., Mirzapour, M. H., & Mirzashahi, K. (2018). Effect of thiobacillus, sulfur, and phosphorus on the yield and nutrient uptake of canola and the chemical properties of calcareous soils in Iran. Communications in Soil Science and Plant Analysis, 49(14), 1671-1683. https://doi.org/10.1080/00103624.2018.1474905 [Google Scholar] [Crossref] 
  3. Baghaie, A. H. (2023). Effect of sulfur granular municipal solid waste, humic acid, and nano Fe-oxide on lead uptake by plants in a calcareous soil in the presence of Thiobacillus. Avicenna Journal of Environmental Health Engineering, 10(1), 10-17. https://doi.org/10.34172/ajehe.2023.5284 [Google Scholar] [Crossref] 
  4. Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068. https://doi.org/10.3389/fpls.2019.01068 [Google Scholar] [Crossref] 
  5. Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page, R. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties (pp. 595-624). American Society of Agronomy, Soil Science Society of America. [Google Scholar]
  6. Burr, A. H. (1984). Evolution of eyes and photoreceptor organelles in the lower phyla. In M. A. Ali (Ed.), Photoreception and vision in invertebrates. NATO Science Series A: Life Sciences, volume 74 (pp. 131-178). Springer. https://doi.org/10.1007/978-1-4613-2743-1_5 [Google Scholar] [Crossref] 
  7. Choi, N. H., Choi, G. J., Min, B. S., Jang, K. S., Choi, Y. H., Kang, M. S., Park, M. S., Choi, J. E., Bae, B. K., & Kim, J. C. (2009). Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi. Journal of Applied Microbiology, 106(6), 2057-2063. https://doi.org/10.1111/j.1365-2672.2009.04175.x [Google Scholar] [Crossref] 
  8. Gryndler, M., Hršelová, H., Chvátalová, I., & Vosátka, M. (1998). In vitro profileration of Glomus fistulosum intraradical hyphae from mycorrhizal root segments of maize. Mycological Research, 102(9), 1067-1073. https://doi.org/10.1017/S0953756297006060 [Google Scholar] [Crossref] 
  9. Hamadali, H., Hafidi, M., Virolle, M. J., & Ouhdouch, Y. (2008). Rock phosphate-solubilizing Actinomycetes: Screening for plant growth-promoting activities. World Journal of Microbiology and Biotechnology, 24(11), 2565-2575. https://doi.org/10.1007/s11274-008-9817-0 [Google Scholar] [Crossref] 
  10. Karaaslan, D., Toncer, O., & Ozturk, F. (2020). The effect of different sulfur levels on seed yield and oil content of some rapeseed cultivars. Journal of Agronomy, Technology and Engineering Management, 3(2), 402-407. [Google Scholar]
  11. Kazemi Oskuei, B., Bandehagh, A., Farajzadeh, D., Asgari Lajayer, B., Shu, W., & Astatkie, T. (2023). Effects of Pseudomonas fluorescens FY32 on canola (Brassica napus L.) cultivars under drought stress induced by polyethylene glycol. Journal of Crop Health, 76, 251-260. https://doi.org/10.1007/s10343-023-00958-6 [Google Scholar] [Crossref] 
  12. López-Valdez, F., Fernández-Luqueño, F., Ceballos-Ramírez, J. M., Marsch, R., Olalde-Portugal, V., & Dendooven, L. (2011). A strain of Bacillus subtilis stimulates sunflower growth (Helianthus annuus L.) temporarily. Scientia Horticulturae, 128(4), 499-505. https://doi.org/10.1016/j.scienta.2011.02.006 [Google Scholar] [Crossref] 
  13. Ma, B. L., Biswas, D. K., Herath, A. W., Whalen, J. K., Qianying Ruan, S., Caldwell, C., Earl, H., Vanasse, A., Scott, P., & Smith, D. L. (2015). Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. Journal of Plant Nutrition and Soil Science, 178(4), 658-670. https://doi.org/10.1002/jpln.201400280 [Google Scholar] [Crossref] 
  14. Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., Zhang, C. (2017). Strigolactones improves plant growth, photosynthesis, and alleviates oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 8, 1671. https://doi.org/10.3389/fpls.2017.01671 [Google Scholar] [Crossref] 
  15. Mitra, D., Uniyal, N., Panneerselvam, P., Senapati, A., & Ganeshamurthy, A. (2019). Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International Journal of Life Sciences and Applied Sciences, 1, 1-10. [Google Scholar]
  16. Mohamed, H. I., & Gomaa, E. Z. (2012). Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica, 50(2), 263-272. https://doi.org/10.1007/s11099-012-0032-8 [Google Scholar] [Crossref] 
  17. Mohammadi, K., Heidari, G. R., Karimi Nezhad, M. T., Ghamari, S., & Sohrabi, Y. (2012). Contrasting soil microbial responses to fertilization and tillage systems in canola rhizosphere. Saudi Journal of Biological Sciences, 19(3), 377-383. https://doi.org/10.1016/j.sjbs.2012.05.001 [Google Scholar] [Crossref] 
  18. Motamed, M., Firoozabadi, M., & Sinaki, J. (2018). Effects of Thiobacillus, sulfur and micronutrient spray on some traits of green beans. Journal of Chemical Health Risks, 8(3), 209-216. [Google Scholar]
  19. Mukherjee, A., & Ane, J. M. (2011). Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Molecular Plant-Microbe Interactions, 24(2), 260-270. https://doi.org/10.1094/mpmi-06-10-0146 [Google Scholar] [Crossref] 
  20. Nacoon, S., Jogloy, S., Riddech, N., & Mongkolthanaruk, W. (2020). Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Scientific Reports, 10, 4916. https://doi.org/10.1038/s41598-020-61846-x [Google Scholar] [Crossref] 
  21. Neshat, M. R., Dadashi Chavan, D., Shirmohammadi, E., Pourbabaee, A. A., Zamani, F., & Torkaman, Z. (2023). Canola inoculation with Pseudomonas baetica R27N3 under salt stress condition improved antioxidant defense and increased expression of salt resistance elements. Industrial Crops and Products, 206(15), 117648. https://doi.org/10.1016/j.indcrop.2023.117648 [Google Scholar] [Crossref] 
  22. Olsen, S.R., & Sommers, L.E. (1982). Phosphorus. In A. L. Page (Ed.), Methods of soil analysis: Part 2 Chemical and microbiological properties, 9.2.2, Second Edition (pp. 403-430). American Society of Agronomy, Soil Science Society of America. [Google Scholar]
  23. Poisson, E., Trouverie, J., Brunel-Muguet, S., Akmouche, Y., Pontet, C., Pinochet, X., & Avice, J. C. (2019). Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Frontiers in Plant Science, 10, 458. https://doi.org/10.3389/fpls.2019.00458 [Google Scholar] [Crossref] 
  24. Pużyńska, K., Kulig, B., Halecki, W., Lepiarczyk, A., & Pużyński, S. (2018). Response of oilseed rape leaves to sulfur and boron foliar application. Acta Physiologiae Plantarum, 40, 169. https://doi.org/10.1007/s11738-018-2748-y [Google Scholar] [Crossref] 
  25. Rameeh, V., Niakan, M., & Mohammadi, M. H. (2019). Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.). Agronomia Colombiana, 37(3), 311-316. https://doi.org/10.15446/agron.colomb.v37n3.71830 [Google Scholar] [Crossref] 
  26. Schreiner, R. P, & Koide, R. T. (1993). Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species. New Phytologist, 123(1), 99-105. https://doi.org/10.1111/j.1469-8137.1993.tb04535.x [Google Scholar] [Crossref] 
  27. Shoja, T., Majidian, M., & Rabiee, M. (2018). Effects of zinc, boron and sulfur on grain yield, activity of some antioxidant enzymes and fatty acid composition of rapeseed (Brassica napus L.). Acta Agriculturae Slovenica, 111(1), 73-84. https://doi.org/10.14720/aas.2018.111.1.08 [Google Scholar] [Crossref] 
  28. Singh, A., Singh, A., Rexer, K. H., Kost, G., & Varma, A. (2003). Root endosymbiont: Piriformospora indica – a boon for orchids. The Journal of Orchid Society of India, 15, 89-102. [Google Scholar]
  29. Souchie, E. L., Azcón, R., Barea, J. M., Saggin-Júnior, O. J., & da Silva, E. M. R. (2007). Indolacetic acid production by P-solubilizing microorganisms and interaction with arbuscular mycorrhizal fungi. Acta Scientiarum. Biological Sciences, 29(3), 315-320. [Google Scholar]
  30. Tabasi, A., Dadashi, M. R., & Faraji, A. (2017). Effect of different sulfur levels plus Thiobacillus on yield and yield components of canola (Brassica napus L.) cultivars in Gorgan, Iran. Azarian Journal of Agriculture, 4(3), 87-94. [Google Scholar]
  31. Taurian, T., Anzuay, M. S., Angelini, J. G., Tonelli, M. L., Ludueña, L., Pena, D., Ibáñez, F., & Fabra, A. (2010). Phosphate-solubilizing peanut associated bacteria: Screening for plant growth-promoting activities. Plant and Soil, 329(1), 421-431. https://doi.org/10.1007/s11104-009-0168-x [Google Scholar] [Crossref] 
  32. Ur Rehman, H., Iqbal, Q., & Farooq, M. (2013). Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiologiae Plantarum, 35, 2999-3006. https://doi.org/10.1007/s11738-013-1331-9 [Google Scholar] [Crossref] 
  33. Vishniac, W., & Santer, M. (1975). The thiobacilli. Bacteriological Reviews, 21(3), 195-213. https://doi.org/10.1128/br.21.3.195-213.1957 [Google Scholar] [Crossref] 
  34. Wang, Y., Fang, B., Zhang, D., Yue, J., Yang, C., Simeng, D., Yunhui, S., Wang, H., Jin, H., & Li, X. (2022). Effects of exogenous Strigolactone on wheat grain filling and yield formation in different cultivation densities. Journal of Biobased Materials and Bioenergy, 16(4), 641-652. https://doi.org/10.1166/jbmb.2022.2205 [Google Scholar] [Crossref] 
  35. Warncke, D., & Brown, J. R. (2011). Potassium and Other Basic Cations. In J. R. Brown (Ed.), Recommended chemical soil test procedures for the north central region (pp. 15–19). North Central Regional Research Publication No. 221. [Google Scholar]
  36. Yang, L., Xie, J., Jiang, D., Fu, Y., Li, G., & Lin, F. (2008). Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World Journal of Microbiology and Biotechnology, 24(7), 909-915. https://doi.org/10.1007/s11274-007-9626-x [Google Scholar] [Crossref] 
  37. Yari, P., Pasari, B., Rokhzadi, A., & Mohammadi, K. (2022). Foliar application of silicon, sulfur, and flowering fruit set biostimulant on canola. Gesunde Pflanzen, 74, 193-203. https://doi.org/10.1007/s10343-021-00602-1 [Google Scholar] [Crossref] 
  38. Yoneyama, K. (2020). Recent progress in the chemistry and biochemistry of strigolactones. Journal of Pesticide Science, 45(2), 45-53. https://doi.org/10.1584/jpestics.D19-084 [Google Scholar] [Crossref] 
  39. Yoneyama, K., & Brewer, P. B. (2021). Strigolactones, how are they synthesized to regulate plant growth and development? Current Opinion in Plant Biology, 63, 102072. https://doi.org/10.1016/j.pbi.2021.102072 [Google Scholar] [Crossref]