Review article    |    Open Access
Acta Natura et Scientia 2025, Vol. 6(2) 198-235

An Exploratory and Future Perspective Review of Adaptogens: A Multifaceted Approach to Enhancing Human Health and Performance

Mostafa Essam Eissa

pp. 198 - 235   |  DOI: https://doi.org/10.61326/actanatsci.v6i2.330

Publish Date: December 12, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Adaptogens, a class of natural substances derived primarily from plants, have gained significant attention for their potential to enhance human health and performance. These compounds are believed to help the body adapt to stress, improve cognitive function, boost immunomodulation and promote overall well-being. This review article is aimed to discuss the diverse world of adaptogens, exploring their historical use, mechanisms of action and scientific evidence supporting their efficacy. A range of adaptogens will be examined and discussed, including well-known examples like Withania somnifera (Ashwagandha), Rhodiola rosea and Panax ginseng, as well as lesser known but promising candidates. The highlights of the key potential benefits of adaptogens in various health conditions, such as anxiety, depression, fatigue and cognitive decline will be addressed. Additionally, the critical evaluation of the available scientific evidence will be mentioned, highlighting the need for rigorous clinical trials to further validate the claims surrounding adaptogens. By synthesizing information from diverse references, including traditional medicine, modern pharmacology and clinical research, this review aims to provide a comprehensive understanding of adaptogens and their potential applications in promoting human health and performance.

Keywords: Adaptogens, Antioxidant, Anti-inflammatory, Cognitive function, Immunomodulation, Neuroprotection, Stress


How to Cite this Article?

APA 7th edition
Eissa, M.E. (2025). An Exploratory and Future Perspective Review of Adaptogens: A Multifaceted Approach to Enhancing Human Health and Performance. Acta Natura et Scientia, 6(2), 198-235. https://doi.org/10.61326/actanatsci.v6i2.330

Harvard
Eissa, M. (2025). An Exploratory and Future Perspective Review of Adaptogens: A Multifaceted Approach to Enhancing Human Health and Performance. Acta Natura et Scientia, 6(2), pp. 198-235.

Chicago 16th edition
Eissa, Mostafa Essam (2025). "An Exploratory and Future Perspective Review of Adaptogens: A Multifaceted Approach to Enhancing Human Health and Performance". Acta Natura et Scientia 6 (2):198-235. https://doi.org/10.61326/actanatsci.v6i2.330

References
  1. Abd El-Hack, M. E., El-Saadony, M. T., Swelum, A. A., Arif, M., Abo Ghanima, M. M., Shukry, M., Noreldin, A., Taha, A. E., & El-Tarabily, K. A. (2021). Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 101(14), 5747–5762. https://doi.org/10.1002/jsfa.11372 [Google Scholar] [Crossref] 
  2. Abdul Azeez, N., Sudarshana Deepa, V., & Sivapriya, V. (2018). Phytosomes: Emergent promising nano vesicular drug delivery system for targeted tumor therapy. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3), 033001. https://doi.org/10.1088/2043-6254/aadc50 [Google Scholar] [Crossref] 
  3. Abdullah, S., & Kumar, A. (2023). A brief review on the medicinal uses of Cordyceps militaris. Pharmacological Research-Modern Chinese Medicine, 7, 100228. https://doi.org/10.1016/j.prmcm.2023.100228 [Google Scholar] [Crossref] 
  4. Addissouky, T. A., El Sayed, I. E., Ali, M. M., Alubiady, M. H., & Wang, Y. (2024). Schisandra chinensis in liver disease: Exploring the mechanisms and therapeutic promise of an ancient Chinese botanical. Archives of Pharmacology and Therapeutics, 6(1), 27–33. https://doi.org/10.33696/Pharmacol.6.052 [Google Scholar] [Crossref] 
  5. Ahmad, M. K., Mahdi, A. A., Shukla, K. K., Islam, N., Rajender, S., Madhukar, D., Shankhwar, S. N., & Ahmad, S. (2010). Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fertility and Sterility, 94(3), 989–996. https://doi.org/10.1016/j.fertnstert.2009.04.046 [Google Scholar] [Crossref] 
  6. Ahmad, R., Riaz, M., Khan, A., Aljamea, A., Algheryafi, M., Sewaket, D., & Alqathama, A. (2021). Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytotherapy Research, 35(11), 6030–6062. https://doi.org/10.1002/ptr.7215 [Google Scholar] [Crossref] 
  7. Akhgarjand, C., Asoudeh, F., Bagheri, A., Kalantar, Z., Vahabi, Z., Shab‐bidar, S., Rezvani, H., & Djafarian, K. (2022). Does Ashwagandha supplementation have a beneficial effect on the management of anxiety and stress? A systematic review and meta‐analysis of randomized controlled trials. Phytotherapy Research, 36(11), 4115–4124. https://doi.org/10.1002/ptr.7598 [Google Scholar] [Crossref] 
  8. Aktar, A., Bhuia, S., Chowdhury, R., Hasan, R., Islam Rakib, A., Al Hasan, S., Akter Sonia, F., & Torequl Islam, M. (2024). Therapeutic promises of bioactive rosavin: A comprehensive review with mechanistic insight. Chemistry & Biodiversity, 21(7), e202400286. https://doi.org/10.1002/cbdv.202400286 [Google Scholar] [Crossref] 
  9. Alasmari, M., Bӧhlke, M., Kelley, C., Maher, T., & Pino-Figueroa, A. (2019). Inhibition of fatty acid amide hydrolase (FAAH) by macamides. Molecular Neurobiology, 56, 1770–1781. https://doi.org/10.1007/s12035-018-1115-8 [Google Scholar] [Crossref] 
  10. Albanese, A., Tang, P. S., & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14(1), 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124 [Google Scholar] [Crossref] 
  11. Alipour, A., & Farokhimanesh, S. (2024). Exploring herbal telomerase activators as promising interventions for skin aging. Med Biomedical Journal, 1(3), 33–45. [Google Scholar]
  12. Alshoaibi, A. (2021). Seed germination, seedling growth and photosynthetic responses to temperature in the tropical tree Moringa oleifera and its relative desert, Moringa peregrina. Egyptian Journal of Botany, 61(2), 541–551. https://doi.org/10.21608/ejbo.2021.63271.1631 [Google Scholar] [Crossref] 
  13. Anarjan, F. S. (2019). Active targeting drug delivery nanocarriers: Ligands. Nano-Structures & Nano-Objects, 19, 100370. https://doi.org/10.1016/j.nanoso.2019.100370 [Google Scholar] [Crossref] 
  14. Anghelescu, I. G., Edwards, D., Seifritz, E., & Kasper, S. (2018). Stress management and the role of Rhodiola rosea: A review. International Journal of Psychiatry in Clinical Practice, 22(4), 242–252. https://doi.org/10.1080/13651501.2017.1417442 [Google Scholar] [Crossref] 
  15. Anonymous. (2024a). The Cognitive Benefits of Rhodiola Rosea: A Comprehensive Guide. Synchronicity Health. Retrieved November 26, 2024, from https://synchronicity.health/blogs/news/the-cognitive-benefits-of-rhodiola-rosea-a-comprehensive-guide [Google Scholar]
  16. Anonymous. (2024b). The role of genetics in personalized medicine. Retrieved on January 14, 2025, from https://auvonhealth.com/blogs/news/genetics-personalized-medicine [Google Scholar]
  17. Anonymous. (2024c). Impact of genetics on personalized medicine. Retrieved on January 13, 2025, from https://americanprofessionguide.com/genetics-on-personalized-medicine/ [Google Scholar]
  18. Anonymous. (2024d). What are adaptogens, and do they actually work? The Calm Editorial Team. Retrieved on January 12, 2025, from https://blog.calm.com/blog/what-are-adaptogens [Google Scholar]
  19. Anonymous. (2025). Siberian ginseng, eleuthero (Eleutherococcus senticosus/ Acanthopanax senticosus). Association for the Advancement of Restorative Medicine. Retrieved on January 11, 2025, from https://restorativemedicine.org/library/monographs/eleuthero/ [Google Scholar]
  20. Anto, M., Mukherjee, K., & Mukherjee, K. (2025). Nano bio-robots: A new frontier in targeted therapeutic delivery. Frontiers in Robotics and AI, 12, 1639445. https://doi.org/10.3389/frobt.2025.1639445 [Google Scholar] [Crossref] 
  21. Arifin, S. F., Al Shami, A., Omar, S. S., Jalil, M. A., Khalid, K. A., & Hadi, H. (2019). Impact of modern technology on the development of natural-based products. Journal of Ayurvedic and Herbal Medicine, 5(4), 133–142. [Google Scholar]
  22. Arone, A., Ivaldi, T., Loganovsky, K., Palermo, S., Parra, E., Flamini, W., & Marazziti, D. (2021). The burden of space exploration on the mental health of astronauts: A narrative review. Clinical Neuropsychiatry, 18(5), 237. https://doi.org/10.36131/cnfioritieditore20210502 [Google Scholar] [Crossref] 
  23. Arouca, A., & Grassi-Kassisse, D. M. (2013). Eleutherococcus senticosus: Studies and effects. Health, 5(9), 1509-1515. https://doi.org/10.4236/health.2013.59205 [Google Scholar] [Crossref] 
  24. Arumugam, V., Venugopal, V., Balakrishnan, A., Bhandari, R., Boopalan, D., Ponnurangam, R., Venkateswaran, S. T., & Kuppusamy, M. (2024). Effects of Ashwagandha (Withania somnifera) on Stress and Anxiety: A Systematic Review and Meta-analysis. Explore, 20(6), 103062. https://doi.org/10.1016/j.explore.2024.103062 [Google Scholar] [Crossref] 
  25. Ayales, A. (2019). Adaptogens: Herbs for longevity and everyday wellness. Union Square & Co. [Google Scholar]
  26. Ayub, A., Ali, K., Nasir, M. F., Rasheed, H., Tabassum, H., & Zahoor, S., Iqbal, W., Abeer, A., Dua-e-Zahra, & Waheed, T. (2024). Herbal harmony. In R. Z. Abbas, A. M. A. Khan, W. Qamar, J. Arshad & S. Mehnaz (Eds.), Complementary and alternative medicine: botanicals/homeopathy/herbal medicine (pp. 495-502). Unique Scientific Publishers. https://doi.org/10.47278/book.CAM/2024.464 [Google Scholar] [Crossref] 
  27. Babii, N. V., Pomozova, V. A., Kiseleva, T. F., & Romanenko, V. O. (2017). Increasing the Adaptive Capacity of the Organism When Exposed to Adverse Environmental Factors Through Phytoadaptogens. IOP Conference Series: Materials Science and Engineering, 221(1), 012019.https://doi.org/10.1088/1757-899X/221/1/012019 [Google Scholar] [Crossref] 
  28. Bach, H. V., Kim, J., Myung, S. K., & Cho, Y. A. (2016). Efficacy of ginseng supplements on fatigue and physical performance: A meta-analysis. Journal of Korean Medical Science, 31(12), 1879–1886. https://doi.org/10.3346/jkms.2016.31.12.1879 [Google Scholar] [Crossref] 
  29. Balkrishna, A., Sharma, N., Srivastava, D., Kukreti, A., Srivastava, S., & Arya, V. (2024). Exploring the safety, efficacy, and bioactivity of herbal medicines: Bridging traditional wisdom and modern science in healthcare. Future Integrative Medicine, 3(1), 35–49. https://doi.org/10.14218/FIM.2023.00086 [Google Scholar] [Crossref] 
  30. Bandiwadekar, A., Jose, J., Khayatkashani, M., Habtemariam, S., Khayat Kashani, H. R., & Nabavi, S. M. (2022). Emerging novel approaches for the enhanced delivery of natural products for the management of neurodegenerative diseases. Journal of Molecular Neuroscience, 72(3), 653–676. https://doi.org/10.1007/s12031-021-01922-7 [Google Scholar] [Crossref] 
  31. Bendre, R. S., Rajput, J. D., Bagul, S. D., & Karandikar, P. S. (2016). Outlooks on medicinal properties of eugenol and its synthetic derivatives. Natural Products Chemistry & Research, 4(3), 1000212. https://doi.org/10.4172/2329-6836.1000212 [Google Scholar] [Crossref] 
  32. Bennett, J. M., Reeves, G., Billman, G. E., & Sturmberg, J. P. (2018). Inflammation--nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing “the epidemic” of chronic diseases. Frontiers in Medicine, 5, 316. https://doi.org/10.3389/fmed.2018.00316 [Google Scholar] [Crossref] 
  33. Bernatoniene, J., Jakstas, V., & Kopustinskiene, D. M. (2023). Phenolic compounds of Rhodiola rosea L. as the potential alternative therapy in the treatment of chronic diseases. International Journal of Molecular Sciences, 24(15), 12293. https://doi.org/10.3390/ijms241512293 [Google Scholar] [Crossref] 
  34. Bi, H., Qu, G., Wang, S., Zhuang, Y., Sun, Z., Liu, T., & Ma, Y. (2022). Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction. Metabolic Engineering, 69, 15–25. https://doi.org/10.1016/j.ymben.2021.10.010 [Google Scholar] [Crossref] 
  35. Bleakney, T. L. (2008). Deconstructing an adaptogen: Eleutherococcus senticosus. Holistic Nursing Practice, 22(4), 220–224. https://doi.org/10.1097/01.HNP.0000326005.65310.7c [Google Scholar] [Crossref] 
  36. Block, K. I., & Mead, M. N. (2003). Immune system effects of echinacea, ginseng, and astragalus: A review. Integrative Cancer Therapies, 2(3), 247–267. https://doi.org/10.1177/1534735403256419 [Google Scholar] [Crossref] 
  37. Brekhman, I. I., & Dardymov, I. V. (1969). New substances of plant origin which increase nonspecific resistance. Annual Review of Pharmacology and Toxicology, 9, 419–430. https://doi.org/10.1146/annurev.pa.09.040169.002223 [Google Scholar] [Crossref] 
  38. Brinckmann, J. A., Cunningham, A. B., & Harter, D. E. (2021). Running out of time to smell the roseroots: Reviewing threats and trade in wild Rhodiola rosea L. Journal of Ethnopharmacology, 269, 113710. https://doi.org/10.1016/j.jep.2020.113710 [Google Scholar] [Crossref] 
  39. Brindha, P. (2016). Role of phytochemicals as immunomodulatory agents: A review. International Journal of Green Pharmacy (IJGP), 10(1). 1-18. [Google Scholar]
  40. Chandrasekhar, K., Kapoor, J., & Anishetty, S. (2012). A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of Ashwagandha root in reducing stress and anxiety in adults. Indian Journal of Psychological Medicine, 34(3), 255–262. https://doi.org/10.4103/0253-7176.106022 [Google Scholar] [Crossref] 
  41. Chatterjee, P., & Khan, A. (2025). Nanotechnology’s voyage: Enriching aquafeed with nutraceuticals. Uttar Pradesh Journal of Zoology, 46(1), 199–216. https://doi.org/10.56557/upjoz/2025/v46i14755 [Google Scholar] [Crossref] 
  42. Choi, E., Oh, J., & Sung, G. H. (2020). Beneficial effect of Cordyceps militaris on exercise performance via promoting cellular energy production. Mycobiology, 48(6), 512–517. https://doi.org/10.1080/12298093.2020.1831135 [Google Scholar] [Crossref] 
  43. Choi, J. G., Jin, Y. H., Lee, H., Oh, T. W., Yim, N. H., Cho, W. K., & Ma, J. Y. (2017). Protective effect of Panax notoginseng root water extract against influenza A virus infection by enhancing antiviral interferon-mediated immune responses and natural killer cell activity. Frontiers in Immunology, 8, 1542. https://doi.org/10.3389/fimmu.2017.01542 [Google Scholar] [Crossref] 
  44. Chopra, P., Chhillar, H., Kim, Y. J., Jo, I. H., Kim, S. ST., & Gupta, R. (2023). Phytochemistry of ginsenosides: Recent advancements and emerging roles. Critical Reviews in Food Science and Nutrition, 63(5), 613–640. https://doi.org/10.1080/10408398.2021.1952159 [Google Scholar] [Crossref] 
  45. Choudhary, D., Bhattacharyya, S., & Bose, S. (2017). Efficacy and safety of ashwagandha (Withania somnifera) root extract in improving memory and cognitive functions. Journal of Dietary Supplements, 14(6), 599–612. https://doi.org/10.1080/19390211.2017.1284970 [Google Scholar] [Crossref] 
  46. Chui, B., & Kissner, L. (2000). Nanorobots for Mars EVA Repair (SAE Technical Paper 2000-01-2478). SAE International. https://doi.org/10.4271/2000-01-2478 [Google Scholar] [Crossref] 
  47. Cicero, A. F., Derosa, G., Brillante, R., Bernardi, R., Nascetti, S., & Gaddi, A. (2004). Effects of Siberian ginseng (Eleutherococcus senticosus maxim.) on elderly quality of life: A randomized clinical trial. Archives of Gerontology and Geriatrics Supplement (9), 69–73. https://doi.org/10.1016/j.archger.2004.04.012 [Google Scholar] [Crossref] 
  48. Clément, G. (2011). Fundamentals of space medicine. Springer Science & Business Media. [Google Scholar]
  49. Coates, P. M., Betz, J. M., Blackman, M. R., Cragg, G. M., Levine, M., Moss, J., & White, J. D. (Eds.). (2010). Encyclopedia of dietary supplements. CRC press. https://doi.org/10.1201/b14669 [Google Scholar] [Crossref] 
  50. Cohen, M. M. (2014). Tulsi - Ocimum sanctum: A herb for all reasons. J Ayurveda Integr Med, 5(4), 251–259. https://doi.org/10.4103/0975-9476.146554 [Google Scholar] [Crossref] 
  51. Coleman, C. I., Hebert, J. H., & Reddy, P. (2003). The effects of Panax ginseng on quality of life. Journal of Clinical Pharmacy and Therapeutics, 28(1), 5–15. https://doi.org/10.1046/j.1365-2710.2003.00467.x [Google Scholar] [Crossref] 
  52. Cropley, M., Banks, A. P., & Boyle, J. (2015). The effects of Rhodiola rosea L. extract on anxiety, stress, cognition and other mood symptoms. Phytotherapy Research, 29(12), 1934–1939. https://doi.org/10.1002/ptr.5486 [Google Scholar] [Crossref] 
  53. Cucinotta, F. A., Alp, M., Sulzman, F. M., & Wang, M. (2014). Space radiation risks to the central nervous system. Life Sciences in Space Research, 2, 54–69. https://doi.org/10.1016/j.lssr.2014.06.003 [Google Scholar] [Crossref] 
  54. Cybel, M. (2024). Genetic variability and clinical significance of cytochrome P450 enzymes in personalized medicine. Journal of Drug Metabolism & Toxicology, 14(3), 1000306. [Google Scholar]
  55. Darbinyan, V., Kteyan, A., Panossian, A., Gabrielian, E., Wikman, G., & Wagner, H. (2000). Rhodiola rosea in stress induced fatigue---a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine, 7(5), 365–371. https://doi.org/10.1016/S0944-7113(00)80055-0 [Google Scholar] [Crossref] 
  56. Darvishi, M., Shamsaie Mehrgan, M., & Khajehrahimi, A. E. (2022). Effect of licorice (Glycyrrhiza glabra) extract as an immunostimulant on serum and skin mucus immune parameters, transcriptomic responses of immune-related gene, and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Frontiers in Veterinary Science, 9, 811684. https://doi.org/10.3389/fvets.2022.811684 [Google Scholar] [Crossref] 
  57. Davis, L., & Kuttan, G. (2000). Immunomodulatory activity of Withania somnifera. Journal of Ethnopharmacology, 71(1–2), 193–200. https://doi.org/10.1016/s0378-8741(99)00206-8 [Google Scholar] [Crossref] 
  58. de Jesus Silva, A. C., Fassio, A. V., Barcelos, M. P., & da Silva Hage-Melim, L. I. (2023). Herbal medicines: From history to current research-a comprehensive survey. In C. A. Taft & S. R. de Lazaro (Eds.), Progress in hydrogen energy, fuel cells, nano-biotechnology and advanced, bioactive compounds. Engineering materials (pp.315-351). Springer, Cham. https://doi.org/10.1007/978-3-031-75984-0_13 [Google Scholar] [Crossref] 
  59. DeMorrow, S. (2018). Role of the hypothalamic--pituitary--adrenal axis in health and disease. International Journal of Molecular Sciences, 19(4), 986. https://doi.org/10.3390/ijms19040986 [Google Scholar] [Crossref] 
  60. Dimpfel, W., Schombert, L., Keplinger-Dimpfel, I. K., & Panossian, A. (2020). Effects of an adaptogenic extract on electrical activity of the brain in elderly subjects with mild cognitive impairment: A randomized, double-blind, placebo-controlled, two-armed cross-over study. Pharmaceuticals, 13(3), 45. https://doi.org/10.3390/ph13030045 [Google Scholar] [Crossref] 
  61. Długołęcka, B., Jówko, E., Kotowska, J., & Gierczuk, D. (2023). Effects of Ashwagandha (Withania somnifera) supplementation on body composition and blood health indices in professional wrestlers. Polish Journal of Sport and Tourism, 30(4), 26–32. https://doi.org/10.2478/pjst-2023-0022 [Google Scholar] [Crossref] 
  62. Dong, M., Li, J., Yang, D., Li, M., Wei, J. (2023). Biosynthesis and pharmacological activities of flavonoids, triterpene saponins and polysaccharides derived from Astragalus membranaceus. Molecules, 28(13), 5018. https://doi.org/10.3390/molecules28135018 [Google Scholar] [Crossref] 
  63. Dsouza, J., Chakraborty, A., & Veigas, J. (2020). Biological connection to the feeling of happiness. Journal of Clinical & Diagnostic Research, 14(10), VE01-VE05. https://doi.org/10.7860/JCDR/2020/45423.14092 [Google Scholar] [Crossref] 
  64. Du, J., Kan, W., Bao, H., Jia, Y., Yang, J., Jia, H. (2021). Interactions between adenosine receptors and cordycepin (3’-deoxyadenosine) from Cordyceps militaris: Possible pharmacological mechanisms for protection of the brain and the amelioration of Covid-19 pneumonia. Journal of Biotechnology and Biomedicine, 4(2), 26–62. https://doi.org/10.26502/jbb.2642-91280035 [Google Scholar] [Crossref] 
  65. Durg, S., Dhadde, S. B., Vandal, R., Shivakumar, B. S., & Charan, C. S. (2015). Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. The Journal of Pharmacy and Pharmacology, 67(7), 879–899. https://doi.org/10.1111/jphp.12398 [Google Scholar] [Crossref] 
  66. Eissa, M. E. (2018). Long march to live on Mars: Medication and physiological challenges. EC Pharmacology and Toxicology, 6, 590–593. [Google Scholar]
  67. Eissa, M. E. (2023a). Studies on morbidities and mortalities from COVID-19: Novel public health practice during pandemic periods. Asian Journal of Applied Sciences, 16(3), 84–94. https://doi.org/10.3923/ajaps.2023.84.94 [Google Scholar] [Crossref] 
  68. Eissa, M. E. (2023b). Trending perspective in evaluation of inspection characteristics of pharmaceutical compound: Comparative study of control charts. Universal Journal of Pharmaceutical Research, 8(5), 15–21. https://doi.org/10.22270/ujpr.v8i5.1006 [Google Scholar] [Crossref] 
  69. Eissa, M. E. (2025). Antimatter: The potential impact on the future of medical and pharmaceutical industries. Universal Journal of Pharmaceutical Research, 10(2), 52–57. https://doi.org/10.22270/ujpr.v10i2.1317 [Google Scholar] [Crossref] 
  70. Eissa, M. E., Rashed, E. R., & Eissa, D. E. (2022). Covid-19 kinetics based on reported daily incidence in highly devastated geographical region: A unique analysis approach of epidemic. Universal Journal of Pharmaceutical Research, 7(6), 58–62. https://doi.org/10.22270/ujpr.v7i6.1257 [Google Scholar] [Crossref] 
  71. Elise. (2020). Rhodiola rosea in traditional medicine. Rhodiola Rosea Revelations. Retrieved on January 15, 2025, from https://rhodiolarosea.org/rhodiola-rosea-in-traditional-medicine/ [Google Scholar]
  72. Emudainohwo, J. O., Ben-Azu, B., Adebayo, O. G., Aduema, W., Uruaka, C., Ajayi, A. M., Okpakpor, E. E., & Ozolua, R. I. (2023). Normalization of HPA axis, cholinergic neurotransmission, and inhibiting brain oxidative and inflammatory dynamics are associated with the adaptogenic-like effect of rutin against psychosocial defeat stress. Journal of Molecular Neuroscience, 73(1), 60–75. https://doi.org/10.1007/s12031-022-02084-w [Google Scholar] [Crossref] 
  73. Ernst, E. (2010). Panax ginseng: An overview of the clinical evidence. Journal of Ginseng Research, 34(4), 259–263. https://doi.org/10.5142/jgr.2010.34.4.259 [Google Scholar] [Crossref] 
  74. Esch, T., & Stefano, G. B. (2004). The neurobiology of pleasure, reward processes, addiction and their health implications. Neuro Endocrinology Letters, 25(4), 235–251. [Google Scholar]
  75. Fan, W., Fan, L., Wang, Z., Mei, Y., Liu, L., Li, L., Yang, L., Wang, Z. (2024). Rare ginsenosides: A unique perspective of ginseng research. Journal of Advanced Research, 66, 303-328. https://doi.org/10.1016/j.jare.2024.01.003 [Google Scholar] [Crossref] 
  76. Ferro, N., Tacoronte, J. E., Reinard, T., Bultinck, P., & Montero, L. A. (2006). Structure--activity analysis on ecdysteroids: A structural and quantum chemical approach based on two biological systems. Journal of Molecular Structure: THEOCHEM, 758(2–3), 263–274. https://doi.org/10.1016/j.theochem.2005.10.027 [Google Scholar] [Crossref] 
  77. Gaffney, B. T., Hügel, H. M., & Rich, P. A. (2001). The effects of Eleutherococcus senticosus and Panax ginseng on steroidal hormone indices of stress and lymphocyte subset numbers in endurance athletes. Life Sciences, 70(4), 431–442. https://doi.org/10.1016/S0024-3205(01)01394-7 [Google Scholar] [Crossref] 
  78. Garcia-Bailo, B., El-Sohemy, A., Haddad, P. S., Arora, P., BenZaied, F., Karmali, M., & Badawi, A. (2011). Vitamins D, C, and E in the prevention of type 2 diabetes mellitus: modulation of inflammation and oxidative stress. Biologics: Targets and Therapy, 6, 7–19. https://doi.org/10.2147/BTT.S14417 [Google Scholar] [Crossref] 
  79. Gerontakos, S. E., Casteleijn, D., Shikov, A. N., & Wardle, J. (2020). A critical review to identify the domains used to measure the effect and outcome of adaptogenic herbal medicines. The Yale Journal of Biology and Medicine, 93(2), 327-346. [Google Scholar]
  80. Gerontakos, S., Taylor, A., Avdeeva, A. Y., Shikova, V. A., Pozharitskaya, O. N., Casteleijn, D., Wardle, J., & Shikov, A. N. (2021). Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. & Maxim.): A narrative review. Journal of Ethnopharmacology, 278, 114274. https://doi.org/10.1016/j.jep.2021.114274 [Google Scholar] [Crossref] 
  81. Gomes, J. R. (2023). Benefits of Ashwagandha for Stress, Metabolic, and Immune Health [Doctoral dissertation, University of Bridgeport]. [Google Scholar]
  82. Gonzales, G. F., Cordova, A., Vega, K., Chung, A., Villena, A., Gonez, C., et al. (2002). Effect of Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia, 34(6), 367–372. https://doi.org/10.1046/j.1439-0272.2002.00519.x [Google Scholar] [Crossref] 
  83. Goulet, E. D., & Dionne, I. J. (2005). Assessment of the effects of Eleutherococcus senticosus on endurance performance. International Journal of Sport Nutrition and Exercise Metabolism, 15(1), 75–83. https://doi.org/10.1123/ijsnem.15.1.75 [Google Scholar] [Crossref] 
  84. Graziani, V., Scognamiglio, M., Esposito, A., Fiorentino, A., & D’Abrosca, B. (2019). Chemical diversity and biological activities of the saponins isolated from Astragalus genus: Focus on Astragaloside IV. Phytochemistry Reviews, 18(4), 1133–1166. https://doi.org/10.1007/s11101-019-09626-y [Google Scholar] [Crossref] 
  85. Gruner, T., & Sarris, J. (2014). Stress and fatigue. In J. Sarris & J. Wardle (Eds.), Clinical Naturopathy 2e: An evidence-based guide to practice (pp. 350-370). Churchill Livingstone, Elsevier. [Google Scholar]
  86. Guehairia, M., & Taleb, H. E. (2023). Effect of Withania somnifera (Ashwagandha) on biochemical and neurobehavioral disturbances induced by chronic restraint stress in an animal model [Doctoral dissertation. Echahid Echahid Cheikh Larbi Tebessi University]. [Google Scholar]
  87. Guilliams, T. G., & Edwards, L. (2010). Chronic stress and the HPA axis: Clinical Assessment and therapeutic considerations. The Standard, 9(2), 1–12. [Google Scholar]
  88. Gulati, K., Anand, R., & Ray, A. (2016). Nutraceuticals as adaptogens: Their role in health and disease. In R. C. Gupta (Ed.), Nutraceuticals: Efficacy, safety and toxicity (pp. 193–205). Academic Press. https://doi.org/10.1016/B978-0-12-802147-7.00016-4 [Google Scholar] [Crossref] 
  89. Guo, S., & Rezaei, M. J. (2024). The benefits of ashwagandha (Withania somnifera) supplements on brain function and sports performance. Frontiers in Nutrition, 11, 1439294. https://doi.org/10.3389/fnut.2024.1439294 [Google Scholar] [Crossref] 
  90. Gupta, M., Wahi, A., Sharma, P., Nagpal, R., Raina, N., Kaurav, M., Bhattacharya, J., Rodrigues Oliveira, S. M., Dolma, K. G., Paul, A. K., de Lourdes Pereira, M., Wilairatana, P., Rahmatullah, M., & Nissapatorn, V. (2022). Recent advances in cancer vaccines: Challenges, achievements, and futuristic prospects. Vaccines, 10(12), 2011. https://doi.org/10.3390/vaccines10122011 [Google Scholar] [Crossref] 
  91. Haber, M., Czachor, A., Kula, P., Juśkiewicz, A., Grelewicz, O., Kucy, N., Servaas, E., Kotula, A., & Siemiątkowski, R. (2024). Ashwagandha as an adaptogen: Its influence on sleep patterns, stress response, and anxiety in modern life. Journal of Education, Health and Sport, 68, 55327. https://doi.org/10.12775/JEHS.2024.68.55327 [Google Scholar] [Crossref] 
  92. Hamidpour, R., Hamidpour, S., Hamidpour, M., Shahlari, M., Sohraby, M., Shahlari, N., & Hamidpour, R. (2015). Chemistry, pharmacology and medicinal property of Rhodiola rosea from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. International Journal of Case Reports and Images, 6(11), 661–671. https://doi.org/10.5348/ijcri-201458-RA-10013 [Google Scholar] [Crossref] 
  93. Holliday, J. (2017). Cordyceps: A highly coveted medicinal mushroom. In D. Agrawal, H. S. Tsay, L. F. Shyur, Y. C. Wu & S. Y. Wang (Eds.), Medicinal plants and fungi: Recent advances in research and development (pp. 59–91). Springer. https://doi.org/10.1007/978-981-10-5978-0_3 [Google Scholar] [Crossref] 
  94. Hossam Abdelmonem, B., Abdelaal, N. M., Anwer, E. K. E., Rashwan, A. A., Hussein, M. A., Ahmed, Y. F., Khashana, R., Hanna, M. M., & Abdelnaser, A. (2024). Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines, 12(7), 1467. https://doi.org/10.3390/biomedicines12071467 [Google Scholar] [Crossref] 
  95. Huang, Y. H., Li, J. T., Zan, K., Wang, J., & Fu, Q. (2022). The traditional uses, secondary metabolites, and pharmacology of Eleutherococcus species. Phytochemistry Reviews, 21, 1081-1184. https://doi.org/10.1007/s11101-021-09775-z [Google Scholar] [Crossref] 
  96. Huizen, J., & French, M. (2017). 9 potential health benefits of eleuthero. Retrieved on January 18, 2025, from https://www.medicalnewstoday.com/articles/319084 [Google Scholar]
  97. Hutson, M. (2023). Tiny robots made from human cells heal damaged tissue. Retrieved August 21, 2025, from https://www.nature.com/articles/d41586-023-03777-x [Google Scholar]
  98. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: A systematic review. BMC Complementary and Alternative Medicine, 12, 70. https://doi.org/10.1186/1472-6882-12-70 [Google Scholar] [Crossref] 
  99. Isokauppila, T., & Broida, D. R. (2024). Healing adaptogens: The definitive guide to using super herbs and mushrooms for your body’s restoration, defense, and performance. Hay House LLC. [Google Scholar]
  100. Ivanova Stojcheva, E., & Quintela, J. C. (2022). The effectiveness of Rhodiola rosea L. preparations in alleviating various aspects of life-stress symptoms and stress-induced conditions---Encouraging clinical evidence. Molecules, 27(12), 3902. https://doi.org/10.3390/molecules27123902 [Google Scholar] [Crossref] 
  101. Iwase, S., Nishimura, N., Tanaka, K., & Mano, T. (2020). Effects of microgravity on human physiology. In R. J. Reynolds (Ed.), Beyond LEO-Human health issues for deep space exploration. IntechOpen. https://doi.org/10.5772/intechopen.90700 [Google Scholar] [Crossref] 
  102. Jafernik, K., Ekiert, H., & Szopa, A. (2021). Schisandra chinensis and Schisandra sphenanthera — From traditional Far Eastern medicine to international utilization. In H. M. Ekiert, K. G. Ramawat & J. Arora (Eds.), Medicinal plants. Sustainable development and biodiversity (pp. 179-227). Springer. https://doi.org/10.1007/978-3-030-74779-4_6 [Google Scholar] [Crossref] 
  103. Jain, K. K. (2021). Role of biomarkers in personalized medicine. In K. K. Jain (Ed.), Textbook of Personalized Medicine (pp. 103–113). Springer. https://doi.org/10.1007/978-3-030-62080-6_3 [Google Scholar] [Crossref] 
  104. Jamal, A. (2023). Embracing nature’s therapeutic potential: Herbal medicine. International Journal of Multidisciplinary Sciences and Arts, 2(3), 117–126. https://doi.org/10.47709/ijmdsa.v2i1.2620 [Google Scholar] [Crossref] 
  105. Jarry, J. (2022, June 9). The problems with adaptogens. McGill University Office for Science and Society. Retrieved on January 16, 2025, from https://www.mcgill.ca/oss/article/covid-19-critical-thinking/problems-adaptogens [Google Scholar]
  106. Jeon, H. J., You, S. H., Nam, E. H., Truong, V. L., Bang, J. H., Bae, Y. J., Rarison, R. H., Kim, S. K., Jeong, W. S., Jung, Y. H., & Shin, M. (2023). Red ginseng dietary fiber promotes probiotic properties of Lactiplantibacillus plantarum and alters bacterial metabolism. Frontiers in Microbiology, 14, 1139386. https://doi.org/10.3389/fmicb.2023.1139386 [Google Scholar] [Crossref] 
  107. Jonas, W. B., Goldman, D., Muhammed, S., Mullins, C. D., & Colloca, L. (2023). Placebo effects and research quality: What is good evidence? In L. Colloca, J. Noel, P. D. Franklin & C. Seneviratne (Eds.), Placebo effects through the lens of translational research (pp. 291–287). Oxford Academic. https://doi.org/10.1093/med/9780197645444.003.0022 [Google Scholar] [Crossref] 
  108. Joshi Pranav, C. (2013). A review on natural memory enhancers (Nootropics). Unique Journal of Engineering and Advanced Sciences, 1(01), 8–18. [Google Scholar]
  109. Joshi, V. K., & Joshi, A. (2021). Rational use of Ashwagandha in Ayurveda (Traditional Indian Medicine) for health and healing. Journal of Ethnopharmacology, 276, 114101. https://doi.org/10.1016/j.jep.2021.114101 [Google Scholar] [Crossref] 
  110. Jurcău, R. N., Jurcău, I. M., Kwak, D. H., Grosu, V. T., & Ormenișan, S. (2019). Eleutherococcus, Schisandra, Rhodiola and Ginseng, for stress and fatigue-a review. Health, Sports & Rehabilitation Medicine, 20(1), 12–17. https://doi.org/10.26659/pm3.2019.20.1.12 [Google Scholar] [Crossref] 
  111. Kakkar, V., Modgill, N., & Kumar, M. (2016). Novel drug delivery systems for herbal antidepressants. In C. Grosso (Ed.), Herbal Medicine in Depression: Traditional Medicine to Innovative Drug Delivery (pp. 529–556). Springer. https://doi.org/10.1007/978-3-319-14021-6_11 [Google Scholar] [Crossref] 
  112. Kakkar, V., Singh, S., Singla, D., & Kaur, I. P. (2011). Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Molecular Nutrition & Food Research, 55(3), 495–503. https://doi.org/10.1002/mnfr.201000310 [Google Scholar] [Crossref] 
  113. Kalia, S. (2022, August). Tulsi-A holy plant with high medicinal and therapeutic value. International Journal of Green Pharmacy, 11(01 Supplementary Issue), S1-S12. [Google Scholar]
  114. Kariatsumari, B. (2019). Understanding adrenal fatigue: Nutritional and lifestyle strategies to effectively restore proper adrenal function. Nutritional Perspectives: Journal of the Council on Nutrition, 42(1), p29. [Google Scholar]
  115. Kaur, P., Makanjuola, V. O., Arora, R., Singh, B., & Arora, S. (2017). Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomedicine & Pharmacotherapy, 95, 1815–1829. https://doi.org/10.1016/j.biopha.2017.09.081 [Google Scholar] [Crossref] 
  116. Kennedy, D. O., & Scholey, A. B. (2003). Ginseng: Potential for the enhancement of cognitive performance and mood. Pharmacology Biochemistry and Behavior, 75(3), 687–700. https://doi.org/10.1016/S0091-3057(03)00126-6 [Google Scholar] [Crossref] 
  117. Kennedy, D. O., Haskell, C. F., Wesnes, K. A., & Scholey, A. B. (2004). Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng. Pharmacology Biochemistry and Behavior, 79(3), 401–411. https://doi.org/10.1016/j.pbb.2004.07.014 [Google Scholar] [Crossref] 
  118. Khanum, F., Bawa, A. S., & Singh, B. (2005). Rhodiola rosea: A versatile adaptogen. Comprehensive Reviews in Food Science and Food Safety, 4(3), 55–62. https://doi.org/10.1111/j.1541-4337.2005.tb00073.x [Google Scholar] [Crossref] 
  119. Kopustinskiene, D. M., & Bernatoniene, J. (2021). Antioxidant effects of Schisandra chinensis fruits and their active constituents. Antioxidants, 10(4), 620. https://doi.org/10.3390/antiox10040620 [Google Scholar] [Crossref] 
  120. Kortesoja, M., Karhu, E., Olafsdottir, E. S., Freysdottir, J., & Hanski, L. (2019). Impact of dibenzocyclooctadiene lignans from Schisandra chinensis on the redox status and activation of human innate immune system cells. Free Radical Biology and Medicine, 131, 309–317. https://doi.org/10.1016/j.freeradbiomed.2018.12.019 [Google Scholar] [Crossref] 
  121. Kruk, J., Aboul-Enein, H. Y., Kładna, A., & Bowser, J. E. (2019). Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radical Research, 53(5), 497–521. https://doi.org/10.1080/10715762.2019.1612059 [Google Scholar] [Crossref] 
  122. Kshirsagara, A., Gnanadeebam, D. S., Deshmukh, M. V., Admutte, N. B., Hemavathi, B., Gayatri, S. N., Kumari, P., Bhattacharya, S., Shrivastava, R., & Barwant, M. M. (2023). Role of herbal medicine in cardiovascular activities. Journal of Advanced Zoology, 44(S7), 278-283. https://doi.org/10.17762/jaz.v44iS7.2756 [Google Scholar] [Crossref] 
  123. Kumar, A., & Kushwaha, A. (2023). Mushrooms: A review of health benefits, cultivation techniques, and nutritional analysis. The Journal of Rural Advancement, 11(1), 40–51. [Google Scholar]
  124. Kumar, R., Gupta, K., Saharia, K., Pradhan, D., & Subramaniam, J. R. (2013a). Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Annals of Neurosciences, 20(1), 13–16. https://doi.org/10.5214/ans.0972.7531.200106 [Google Scholar] [Crossref] 
  125. Kumar, A., Rahal, A., Chakraborty, S., Tiwari, R., Latheef, S. K., & Dhama, K. (2013b). Ocimum sanctum (Tulsi): A miracle herb and boon to medical science-A review. International Journal of Agronomy and Plant Production. 4(7), 1580-1589. [Google Scholar]
  126. Kumar, A., Venugopal, S., Jnanesha, A. C., & Lal, R. K. (2023). Agricultural-based challenges, genetic enhancement, and obstacles to an industrially important medicinal plant, ashwagandha (Withania somnifera (L.) Dunal): A review. Ecological Genetics and Genomics, 28, 100183. https://doi.org/10.1016/j.egg.2023.100183 [Google Scholar] [Crossref] 
  127. Kumar, P., Banik, S. P., Goel, A., Chakraborty, S., Bagchi, M., & Bagchi, D. (2024). Revisiting the multifaceted therapeutic potential of Withaferin A (WA), a novel steroidal lactone, W-ferinAmax Ashwagandha, from Withania Somnifera (L) Dunal. Journal of the American Nutrition Association, 43(2), 115–130. https://doi.org/10.1080/27697061.2023.2228863 [Google Scholar] [Crossref] 
  128. Kung, D. (2023 March, 3). Schisandra berry benefits: Liver health, cognitive protection, and more. Retrieved November 26, 2024, from https://nz.iherb.com/blog/schisandra-berry-health-benefits/1683 [Google Scholar]
  129. Kurkin, V. A., & Ryazanova, T. K. (2021). Standardization problems of medicinal preparations from Rhodiola rosea L. Pharmacy & Pharmacology, 9(3), 185–194. https://doi.org/10.19163/2307-9266-2021-9-3-185-194 [Google Scholar] [Crossref] 
  130. Lazarev, N. V. (1958). Obshchee i spetsificheskoe v deistvii farmakologicheskikh sredstv [General and specific effects of drugs]. Farmakologiia i Toksikologiia, 21(3), 81–86. [Google Scholar]
  131. Levy, J. (2023, February 20). Schisandra Benefits for the Adrenals, Liver & More. Dr. Axe. Retrieved on January 17, 2025, from https://draxe.com/nutrition/schisandra/ [Google Scholar]
  132. Li, F., Liu, B., Li, T., Wu, Q., Xu, Z., Gu, Y., Li, W., Wang, P., Ma, T., & Lei, H. (2020). Review of constituents and biological activities of triterpene saponins from Glycyrrhizae Radix et Rhizoma and its solubilization characteristics. Molecules, 25(17), 3904. https://doi.org/10.3390/molecules25173904 [Google Scholar] [Crossref] 
  133. Li, Y., Pham, V., Bui, M., Song, L., Wu, C., Walia, A., Uchio, E., Smith-Liu, F., & Zi, X. (2017a). Rhodiola rosea L.: An herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. Current Pharmacology Reports, 3(6), 384–395. https://doi.org/10.1007/s40495-017-0106-1 [Google Scholar] [Crossref] 
  134. Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L., & Wang, J. (2017b). Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2(4), eaam6431. https://doi.org/10.1126/scirobotics.aam6431 [Google Scholar] [Crossref] 
  135. Li, X., Liang, S., Tan, C. H., Cao, S., Xu, X., Er Saw, P., & Tao, W. (2021). Nanocarriers in the enhancement of therapeutic efficacy of natural drugs. BIO Integration, 2(2), 40–49. https://doi.org/10.15212/bioi-2020-0040 [Google Scholar] [Crossref] 
  136. Liao, L. Y., He, Y. F., Li, L., Meng, H., Dong, Y. M., Yi, F., & Xiao, P. G. (2018). A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chinese Medicine, 13, 57. https://doi.org/10.1186/s13020-018-0214-9 [Google Scholar] [Crossref] 
  137. Liu, N., Ruan, J., Li, H., & Fu, J. (2023a). Nanoparticles loaded with natural medicines for the treatment of Alzheimer’s disease. Frontiers in Neuroscience, 17, 1112435. https://doi.org/10.3389/fnins.2023.1112435 [Google Scholar] [Crossref] 
  138. Liu, S. Q., Yang, Y. P., Hussain, N., Jian, Y. Q., Li, B., Qiu, Y. X., Yu, H. H., Wang, H. Z., & Wang, W. (2023b). Dibenzocyclooctadiene lignans from the family Schisandraceae: A review of phytochemistry, structure-activity relationship, and hepatoprotective effects. Pharmacological Research, 195, 106872. https://doi.org/10.1016/j.phrs.2023.106872 [Google Scholar] [Crossref] 
  139. Liu, X., Lou, K., Zhang, Y., Li, C., Wei, S., & Feng, S. (2024). Unlocking the medicinal potential of plant-derived extracellular vesicles: Current progress and future perspectives. International Journal of Nanomedicine, 4877–4892. https://doi.org/10.2147/IJN.S463145 [Google Scholar] [Crossref] 
  140. Lopresti, A. L., & Smith, S. J. (2021). Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials. Journal of Herbal Medicine, 28, 100434. https://doi.org/10.1016/j.hermed.2021.100434 [Google Scholar] [Crossref] 
  141. Lopresti, A. L., Smith, S. J., & Drummond, P. D. (2022). Modulation of the hypothalamic--pituitary--adrenal (HPA) axis by plants and phytonutrients: A systematic review of human trials. Nutritional Neuroscience, 25(8), 1704–1730. https://doi.org/10.1080/1028415X.2021.1892253 [Google Scholar] [Crossref] 
  142. Lopresti, A. L., Smith, S. J., Malvi, H., & Kodgule, R. (2019). An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine, 98(37), e17186. https://doi.org/10.1097/MD.0000000000017186 [Google Scholar] [Crossref] 
  143. Lui, S. L., Zhu, D., Cheng, S. W., Ng, F., Hui, P. C., Yip, T., & Lo, W. K. (2015). Effects of Astragalus membranaceus-based Chinese medicine formulae on residual renal function in patients on peritoneal dialysis. Peritoneal Dialysis International, 35(5), 595–597. https://doi.org/10.3747/pdi.2014.00039 [Google Scholar] [Crossref] 
  144. Luo, J., Ganesan, K., & Xu, B. (2024). Unlocking the Power: New insights into the anti-aging properties of mushrooms. Journal of Fungi, 10(3), 215. https://doi.org/10.3390/jof10030215 [Google Scholar] [Crossref] 
  145. Majeed, M., Nagabhushanam, K., & Mundkur, L. (2023). A standardized Ashwagandha root extract alleviates stress, anxiety, and improves quality of life in healthy adults by modulating stress hormones: Results from a randomized, double-blind, placebo-controlled study. Medicine, 102(41), e35521. https://doi.org/10.1097/MD.0000000000035521 [Google Scholar] [Crossref] 
  146. Manjunath, A. M., Priya, S., & Jyothi, D. (2023). Mucoadhesive chitosan-coated PLGA nanoparticles of ashwagandha extract for colon-targeted delivery. Indian Journal of Pharmaceutical Education and Research, 57(4), 971–982. https://doi.org/10.5530/ijper.57.4.119 [Google Scholar] [Crossref] 
  147. MedlinePlus. (2024). What is the difference between precision medicine and personalized medicine? What about pharmacogenomics? Retrieved on January 19, 2025, from https://medlineplus.gov/genetics/understanding/precisionmedicine/precisionvspersonalized/ [Google Scholar]
  148. Meireles, D., Gomes, J., Lopes, L., Hinzmann, M., & Machado, J. (2020). A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Advances in Traditional Medicine, 20(4), 495–515. https://doi.org/10.1007/s13596-020-00468-0 [Google Scholar] [Crossref] 
  149. Milicic, A., Reinke, S., Fergusson, J., Lindblad, E. B., Thakur, A., Corby, G., Longet, S., Górska, S., Razim, A., Hu, K., & Morein, B. (2022). Adjuvants, immunomodulators, and adaptogens. In R. Ashfield, A. N. Oli, C. Esimone & L. Anagu (Eds.), Vaccinology and methods in vaccine research: Developments in immunology (pp. 223–280). Academic Press. https://doi.org/10.1016/B978-0-323-91146-7.00009-3 [Google Scholar] [Crossref] 
  150. Mizuno, T., Wang, G., Zhang, J., Kawagishi, H., Nishitoba, T., & Li, J. (1995). Reishi, Ganoderma lucidum and Ganoderma tsugae: Bioactive substances and medicinal effects. Food Reviews International, 11(1, Mushrooms: The Versatile Fungus-Food and Medicinal Properties), 151–166. https://doi.org/10.1080/87559129509541025 [Google Scholar] [Crossref] 
  151. Mogul, R., & Moeller, R. (Eds.). (2022). Microbiology of extreme and human-made confined environments (Spacecraft, space stations, cleanrooms, and analogous sites). Frontiers Media SA. [Google Scholar]
  152. Murray, M. T. (2020a). Eleutherococcus senticosus (Siberian ginseng). In J. E. Pizzorno & M. T. Murray (Eds.), Textbook of natural medicine (Fifth Ed.) (pp. 574–577.e1). Churchill Livingstone. https://doi.org/10.1016/B978-0-323-43044-9.00076-5 [Google Scholar] [Crossref] 
  153. Murray, M. T. (2020b). Glycyrrhiza glabra (licorice). In J. E. Pizzorno & M. T. Murray (Eds.), Textbook of natural medicine (Fifth Ed.) (pp. 641-647.e3). https://doi.org/10.1016/B978-0-323-43044-9.00085-6 [Google Scholar] [Crossref] 
  154. NASA Spinoff. (2024, January 29). Medical-Grade smartwatch can monitor astronauts, patients. Retrieved August 21, 2025, from https://spinoff.nasa.gov/Medical-Grade_Smartwatch_Can_Monitor_Astronauts_Patients [Google Scholar]
  155. NASA. (2020, September 30). Astronaut artificial intelligence monitors patients at home. Retrieved August 21, 2025, from https://www.nasa.gov/technology/tech-transfer-spinoffs/astronaut-artificial-intelligence-monitors-patients-at-home/ [Google Scholar]
  156. National Center for Biotechnology Information (2024a). PubChem Substance Record for SID 249819622, Macamide 1. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/substance/249819622 [Google Scholar]
  157. National Center for Biotechnology Information (2024b). PubChem Compound Summary for CID 13943297, Astragaloside IV. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Astragaloside-IV [Google Scholar]
  158. National Center for Biotechnology Information (2024c). PubChem Compound Summary for CID 14982, Glycyrrhizin. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Glycyrrhizin [Google Scholar]
  159. National Center for Biotechnology Information (2024d). PubChem Compound Summary for CID 161671, Withanolide D. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Withanolide-D [Google Scholar]
  160. National Center for Biotechnology Information (2024e). PubChem Compound Summary for CID 442830, Acanthoside D. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Acanthoside-D [Google Scholar]
  161. National Center for Biotechnology Information (2024f). PubChem Compound Summary for CID 3001664, Schisandrin. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Schisandrin [Google Scholar]
  162. National Center for Biotechnology Information (2024g). PubChem Compound Summary for CID 3314, Eugenol. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Eugenol [Google Scholar]
  163. National Center for Biotechnology Information (2024h). PubChem Compound Summary for CID 441923, Ginsenoside Rg1. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Ginsenoside-Rg1 [Google Scholar]
  164. National Center for Biotechnology Information (2024i). PubChem Compound Summary for CID 6303, Cordycepin. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Cordycepin [Google Scholar]
  165. National Center for Biotechnology Information (2024j). PubChem Compound Summary for CID 9823887, Rosavin. Retrieved November 27, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Rosavin [Google Scholar]
  166. Ng, Q. X., Loke, W., Foo, N. X., Tan, W. J., Chan, H. W., Lim, D. Y., & Yeo, W. S. (2020). A systematic review of the clinical use of Withania somnifera (Ashwagandha) to ameliorate cognitive dysfunction. Phytotherapy Research, 34(3), 583–590. https://doi.org/10.1002/ptr.6552 [Google Scholar] [Crossref] 
  167. Nocerino, E., Amato, M., & Izzo, A. A. (2000). The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia, 71(Suppl 1), S1–S5. https://doi.org/10.1016/S0367-326X(00)00170-2 [Google Scholar] [Crossref] 
  168. Nowak, A., Zakłos-Szyda, M., Błasiak, J., Nowak, A., Zhang, Z., & Zhang, B. (2019). Potential of Schisandra chinensis (Turcz.) Baill. in human health and nutrition: A review of current knowledge and therapeutic perspectives. Nutrients, 11(2), 333. https://doi.org/10.3390/nu11020333 [Google Scholar] [Crossref] 
  169. Nunez, J. (2024). The ancient medicine cabinet. John Nunez. [Google Scholar]
  170. Oliynyk, S., & Oh, S. (2013). Actoprotective effect of ginseng: Improving mental and physical performance. Journal of Ginseng Research, 37(2), 144-166. https://doi.org/10.5142/jgr.2013.37.144 [Google Scholar] [Crossref] 
  171. Otieno, B. A. (2019). Natural immune boosters: A review of ten key herbs for enhancing immune function. Australian Herbal Insight, 1(1), 1–6. https://doi.org/10.25163/ahi.1120051 [Google Scholar] [Crossref] 
  172. Oyedokun, P. A., Ashonibare, V. J., Fabrael, F. B., Akhigbe, T. M., Akangbe, M. D., & Akhigbe, R. E. (2024). Understanding the intricate impacts and mechanism of actions of adaptogens on reproductive function. Cell Biochemistry and Biophysics, 83, 327-343. https://doi.org/10.1007/s12013-024-01565-6 [Google Scholar] [Crossref] 
  173. Pagel, J. I., & Choukèr, A. (2016, June 15). Effects of isolation and confinement on humans-implications for manned space explorations. Journal of Applied Physiology, 120(12), 1449-1457. https://doi.org/10.1152/japplphysiol.00928.2015 [Google Scholar] [Crossref] 
  174. Palamarchuk, I. S., & Vaillancourt, T. (2021). Mental resilience and coping with stress: A comprehensive, multi-level model of cognitive processing, decision making, and behavior. Frontiers in Behavioral Neuroscience, 15, 719674. https://doi.org/10.3389/fnbeh.2021.719674 [Google Scholar] [Crossref] 
  175. Palencia, R. (2020, April 24). Nanotech to the rescue: Healing patients with tiny tech. Electronics 360. Retrieved August 21, 2025, from https://electronics360.globalspec.com/article/15017/nanotech-to-the-rescue-healing-patients-with-tiny-tech [Google Scholar]
  176. Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacogn Phytochem, 2(5), 115–119. [Google Scholar]
  177. Panossian, A. (2017). Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Annals of the New York Academy of Sciences, 1401(1), 49–64. https://doi.org/10.1111/nyas.13399 [Google Scholar] [Crossref] 
  178. Panossian, A. G. (2013). Adaptogens in mental and behavioral disorders. Psychiatric Clinics of North America, 36(1), 49–64. https://doi.org/10.1016/j.psc.2012.12.005 [Google Scholar] [Crossref] 
  179. Panossian, A. G., Efferth, T., Shikov, A. N., Pozharitskaya, O. N., Kuchta, K., Mukherjee, P. K., Banerjee, S., Heinrich, M., Wu, W., Guo, D. A., & Wagner, H. (2021). Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases. Medicinal Research Reviews, 41(1), 630–703. https://doi.org/10.1002/med.21743 [Google Scholar] [Crossref] 
  180. Panossian, A., & Brendler, T. (2020). The role of adaptogens in prophylaxis and treatment of viral respiratory infections. Pharmaceuticals, 13(9), 236. https://doi.org/10.3390/ph13090236 [Google Scholar] [Crossref] 
  181. Panossian, A., & Efferth, T. (2022). Network pharmacology of adaptogens in the assessment of their pleiotropic therapeutic activity. Pharmaceuticals, 15(9), 1051. https://doi.org/10.3390/ph15091051 [Google Scholar] [Crossref] 
  182. Panossian, A., & Gerbarg, P. (2016). Potential use of plant adaptogens in age-related disorders. In H. Lavretsky, M. Sajatovic, & C. F. Reynolds III (Eds.), Complementary, alternative, and integrative interventions in mental health and aging (pp. 197–211). Oxford Academic. https://doi.org/10.1093/med/9780199380862.003.0013 [Google Scholar] [Crossref] 
  183. Panossian, A., & Wagner, H. (2005). Stimulating effect of adaptogens: An overview with particular reference to their efficacy following single dose administration. Phytotherapy Research, 19(10), 819–838. https://doi.org/10.1002/ptr.1751 [Google Scholar] [Crossref] 
  184. Panossian, A., & Wikman, G. (2008). Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. Journal of Ethnopharmacology, 118(2), 183–212. https://doi.org/10.1016/j.jep.2008.04.020 [Google Scholar] [Crossref] 
  185. Panossian, A., & Wikman, G. (2009). Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Current Clinical Pharmacology, 4(3), 198–219. https://doi.org/10.2174/157488409789375311 [Google Scholar] [Crossref] 
  186. Panossian, A., & Wikman, G. (2010). Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress-protective activity. Pharmaceuticals, 3(1), 188–224. https://doi.org/10.3390/ph3010188 [Google Scholar] [Crossref] 
  187. Panossian, A., & Wikman, G. (2014). Evidence based efficacy and effectiveness of Rhodiola SHR-5 extract in treating stress- and age-associated disorders. In A. Cuerrier & K. Ampong-Nyarko (Eds.), Rhodiola rosea, Series: Traditional Herbal Medicines for Modern Times (pp. 205-223). CRC Press. [Google Scholar]
  188. Panossian, A., Seo, E. J., & Efferth, T. (2018). Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine, 50, 257–284. https://doi.org/10.1016/j.phymed.2018.09.204 [Google Scholar] [Crossref] 
  189. Panossian, A., Seo, E. J., & Efferth, T. (2019). Effects of anti-inflammatory and adaptogenic herbal extracts on gene expression of eicosanoids signaling pathways in isolated brain cells. Phytomedicine, 60, 152881. https://doi.org/10.1016/j.phymed.2019.152881 [Google Scholar] [Crossref] 
  190. Panossian, A., Wikman, G., & Sarris, J. (2010). Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 17(7), 481–493. https://doi.org/10.1016/j.phymed.2010.02.002 [Google Scholar] [Crossref] 
  191. Panossian, A., Wikman, G., & Wagner, H. (1999). Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine, 6(4), 287–300. https://doi.org/10.1016/s0944-7113(99)80023-3 [Google Scholar] [Crossref] 
  192. Park, W. S., Koo, K. A., Bae, J. Y., Kim, H. J., Kang, D. M., Kwon, J. M., Paek, S. M., Lee, M. K., Kim, C. Y., & Ahn, M. J. (2021). Dibenzocyclooctadiene lignans in plant parts and fermented beverages of Schisandra chinensis. Plants, 10(2), 361. https://doi.org/10.3390/plants10020361 [Google Scholar] [Crossref] 
  193. Pasdaran, A., Hassani, B., Tavakoli, A., Kozuharova, E., & Hamedi, A. (2023). A review of the potential benefits of herbal medicines, small molecules of natural sources, and supplements for health promotion in lupus conditions. Life, 13(7), 1589. https://doi.org/10.3390/life13071589 [Google Scholar] [Crossref] 
  194. Paterson, R. R. (2008). Cordyceps – A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 69(7), 1469–1495. https://doi.org/10.1016/j.phytochem.2008.01.027 [Google Scholar] [Crossref] 
  195. Pawar, V. S., & Shivakumar, H. (2012). A current status of adaptogens: natural remedy to stress. Asian Pacific Journal of Tropical Disease, 2(Supplement 1), S480–S490. https://doi.org/10.1016/S2222-1808(12)60207-2 [Google Scholar] [Crossref] 
  196. Petitto, M. (2020). Adaptogens: A directory of over 70 healing herbs for energy, stress relief, beauty, and overall well-being. Chartwell Books. [Google Scholar]
  197. Pięta, E., Chrabąszcz, K., Pogoda, K., Suchy, K., Paluszkiewicz, C., & Kwiatek, W. M. (2023). Adaptogenic activity of withaferin A on human cervical carcinoma cells using high-definition vibrational spectroscopic imaging. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1869(2), 166615. https://doi.org/10.1016/j.bbadis.2022.166615 [Google Scholar] [Crossref] 
  198. Pino-Figueroa, A., Nguyen, D., & Maher, T. J. (2010). Neuroprotective effects of Lepidium meyenii (Maca). Annals of the New York Academy of Sciences, 1199(1), 77–85. https://doi.org/10.1111/j.1749-6632.2009.05174.x [Google Scholar] [Crossref] 
  199. Plante, M. (2024, September 10). This is What happens to your body when you take these adaptogenic herbs. Retrieved on January 20, 2025, from https://www.organicauthority.com/health/this-is-what-happens-to-your-body-when-you-take-these-adaptogenic-herbs [Google Scholar]
  200. Pokushalov, E., Ponomarenko, A., Shrainer, E., Kudlay, D., & Miller, R. (2024). Biomarker-guided dietary supplementation: A narrative review of precision in personalized nutrition. Nutrients, 16(23), 4033. https://doi.org/10.3390/nu16234033 [Google Scholar] [Crossref] 
  201. Potoroko, I. Y., Berebin, M. A., Kalinina, I. V., Ivanova, D. G., & Kiselova-Kaneva, Y. (2018). Plant adaptogens in specialized food products as a factor of homeostatic regulation involving microbiota. Человек. Спорт. Медицина, 18(2), 97–108. [Google Scholar]
  202. Powers, D. (2022). Eleuthero vs. ginseng: Key differences explained. The Botanical Institute. Retrieved November 26, 2024, from https://botanicalinstitute.org/eleuthero-vs-ginseng/ [Google Scholar]
  203. Pratte, M. A., Nanavati, K. B., Young, V., & Morley, C. P. (2014). An alternative treatment for anxiety: A systematic review of human trial results reported for the Ayurvedic herb Ashwagandha (Withania somnifera). Journal of Alternative and Complementary Medicine, 20(12), 901–908. https://doi.org/10.1089/acm.2014.0177 [Google Scholar] [Crossref] 
  204. Prinsen, C. A. C., Vohra, S., Rose, M. R., Boers, M., Tugwell, P., Clarke, M., Williamson, P. R., & Terwee, C. B. (2016). How to select outcome measurement instruments for outcomes included in a “Core Outcome Set” -- A practical guideline. Trials, 17, 449. https://doi.org/10.1186/s13063-016-1555-2 [Google Scholar] [Crossref] 
  205. Provino, R. (2010). The role of adaptogens in stress management. Australian Journal of Medical Herbalism, 22(2), 41–49. https://doi.org/10.1016/j.jff.2023.105695 [Google Scholar] [Crossref] 
  206. Quinones, D., Barrow, M., & Seidler, K. [Google Scholar]