Review article    |    Open Access
Acta Natura et Scientia 2025, Vol. 6(2) 236-247

KBRN Eğitimlerinde Kritik Ekipman Kullanım Hataları ve Operasyonel Risklerin Yönetimi: Entegre Bir Yaklaşım

Abdullah Özkan, Ali Çobanoğlu

pp. 236 - 247   |  DOI: https://doi.org/10.61326/actanatsci.v6i2.429

Publish Date: December 12, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Bu çalışma, kimyasal, biyolojik, radyolojik ve nükleer (KBRN) eğitimlerinde ortaya çıkan insan hatalarının nedenlerini çok katmanlı bir sistem yaklaşımıyla incelemekte ve bu hataların eğitimsel süreçlere entegrasyonunu sağlayan bütünleşik bir değerlendirme modeli önermektedir. Çalışma aynı zamanda KBRN eğitimlerinde sıkça karşılaşılan ekipman kullanım hatalarının yalnızca teknik eksikliklerden değil, bilişsel yük, ergonomik kısıtlar, çevresel faktörler ve karar verme süreçlerindeki karmaşadan kaynaklandığını ortaya koymaktadır. Bununla birlikte, insan faktörleri kuramlarını, ergonomik analiz yaklaşımlarını ve operasyonel risk yönetimi ilkelerini birleştirerek hataların kök nedenlerini açıklamaya odaklanmıştır. Kuramsal çerçeve çok katmanlı bariyer mantığına dayanan Swiss Cheese modeli, hata sınıflandırma sistematiği sunan HFACS ve insan–ekipman–çevre etkileşimini irdeleyen SHELL modelinin sentezine dayanmaktadır. Bu üç modelin bütüncül olarak uygulanması, KBRN eğitimlerinde güvenlik kültürünün geliştirilmesine, senaryo temelli öğrenme yöntemlerinin etkinliğinin artırılmasına ve kişisel koruyucu ekipman kullanımında ergonomik optimizasyonun sağlanmasına katkı sunmaktadır. Çalışma insan hatası kuramlarını KBRN eğitimleri bağlamına uyarlayan disiplinler arası bir entegrasyon modeli önermesiyle diğer çalışmalardan öne çıkmaktadır. Elde edilen sonuçlar, model temelli eğitim tasarımının karar destek araçları ve standardize edilmiş iş akışlarıyla bütünleştirildiğinde operasyonel güvenliğin ölçülebilir biçimde güçlendiğini göstermektedir.

Keywords: KBRN eğitimi, İnsan faktörleri, Hata analizi, Ergonomi, Risk yönetimi, Karar destek sistemleri


How to Cite this Article?

APA 7th edition
Ozkan, A., & Cobanoglu, A. (2025). KBRN Eğitimlerinde Kritik Ekipman Kullanım Hataları ve Operasyonel Risklerin Yönetimi: Entegre Bir Yaklaşım. Acta Natura et Scientia, 6(2), 236-247. https://doi.org/10.61326/actanatsci.v6i2.429

Harvard
Ozkan, A. and Cobanoglu, A. (2025). KBRN Eğitimlerinde Kritik Ekipman Kullanım Hataları ve Operasyonel Risklerin Yönetimi: Entegre Bir Yaklaşım. Acta Natura et Scientia, 6(2), pp. 236-247.

Chicago 16th edition
Ozkan, Abdullah and Ali Cobanoglu (2025). "KBRN Eğitimlerinde Kritik Ekipman Kullanım Hataları ve Operasyonel Risklerin Yönetimi: Entegre Bir Yaklaşım". Acta Natura et Scientia 6 (2):236-247. https://doi.org/10.61326/actanatsci.v6i2.429

References
  1. Abari, J. B., Cortez, R. O. F., & Sario, J. A. (2024). Safety culture of approved training organizations: Basis for an emergency response plan manual. SIBATIK Journal: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, 3(7), 817–918. [Google Scholar]
  2. Altan, B., Gürer, S., Alsamarei, A., Demir, D. K., Düzgün, H. Ş., Erkayaoğlu, M., & Surer, E. (2022). Developing serious games for CBRN-e training in mixed reality, virtual reality, and computer-based environments. International Journal of Disaster Risk Reduction, 77, 103022. https://doi.org/10.1016/j.ijdrr.2022.103022 [Google Scholar] [Crossref] 
  3. Anderson, T., & Boddington, C. (2024). A mixed methods descriptive literature review assessing the effects of CBRN personal protective equipment on human factors and clinical skills. Journal of High Threat & Austere Medicine, 6(2), 2–10. [Google Scholar]
  4. Bearman, C., Hayes, P., Kuhn, M., Penney, G., McLennan, J., Butler, P., & Flin, R. (2025). The current state and future needs of decision making: Knowledge, practice, tools and training options. Technical Report. Natural Hazards Research Australia (NHRA) Report No.44.2025. Natural Hazards Research Australia. [Google Scholar]
  5. Bogdan-Ioan, V., Min, P., Valentin-Teodor, A., & Alexandru Octavian, P. (2024). Scientific and evidence-based support in emergency preparedness and resilience strengthening, under volatility and uncertainty. In F. C. Cirstoiu, V. Juc, C. Pop, P. Min & C. Barna (Eds.), Medical Response strategy in case of radiation emergency caused by the war in Ukraine. NATO 2023. NATO Science for Peace and Security Series B: Physics and Biophysics (pp 139–149). Springer. https://doi.org/10.1007/978-94-024-2266-5_14 [Google Scholar] [Crossref] 
  6. Diller, T., Helmrich, G., Dunning, S., Cox, S., Buchanan, A., & Shappel, S. (2014). The Human Factors Analysis Classification System (HFACS) applied to health care. American Journal of Medical Quality, 29(3), 181–190. https://doi.org/10.1177/1062860613491623 [Google Scholar] [Crossref] 
  7. Farhat, H., Alinier, G., Chaabna, K., El Aifa, K., Abougalala, W., Laughton, J., & Ben Dhiab, M. (2024). Preparedness and emergency response strategies for chemical, biological, radiological and nuclear emergencies in disaster management: A qualitative systematic review. Journal of Contingencies and Crisis Management, 32(3), e12592. https://doi.org/10.1111/1468-5973.12592 [Google Scholar] [Crossref] 
  8. Giaume, L., Le Roy, B., Daniel, Y., Lauga Cami, H., Jost, D., Travers, S., & Trousselard, M. (2024). Psychological, cognitive, and physiological impact of hazards casualties’ trainings on first responders: The example of a chemical and radiological training. An exploratory study. Frontiers in Psychology, 15, 1336701. https://doi.org/10.3389/fpsyg.2024.1336701 [Google Scholar] [Crossref] 
  9. Gkikas, G. K., Papangelis, G., Mantzios, K., Ioannou, L. G., & Flouris, A. D. (2025). Validation and enhancement of two predictive models evaluating physiological strain during physical work while wearing personal protective equipment. Industrial Health, 2025-0088. https://doi.org/10.2486/indhealth.2025-0088 [Google Scholar] [Crossref] 
  10. Hancko, D., Majlingova, A., & Kačíková, D. (2025). Integrating virtual reality, augmented reality, mixed reality, extended reality, and simulation-based systems into fire and rescue service training: Current practices and future directions. Fire, 8(6), 228. https://doi.org/10.3390/fire8060228 [Google Scholar] [Crossref] 
  11. Hawkins, F. H. (1993). Human factors in flight (Edited by H. W. Orlady) (2nd ed.). Routledge. https://doi.org/10.4324/9781351218580 [Google Scholar] [Crossref] 
  12. Kegyes, T., Süle, Z., & Abonyi, J. (2024). Machine learning-based decision support framework for CBRN protection. Heliyon, 10(4), e25946. https://doi.org/10.1016/j.heliyon.2024.e25946 [Google Scholar] [Crossref] 
  13. Lee, H. (2025). Integration of wearable sensing and human recognition functions in smart safety workwear: Enhancing worker protection in construction sites. International Journal of Clothing Science and Technology, 37(3), 604-625. https://doi.org/10.1108/IJCST-01-2025-0019 [Google Scholar] [Crossref] 
  14. Li, W. C., Harris, D., & Yu, C. S. (2008). Routes to failure: Analysis of 41 civil aviation accidents from the Republic of China using the human factors analysis and classification system. Accident Analysis & Prevention, 40(2), 426-434. https://doi.org/10.1016/j.aap.2007.07.011 [Google Scholar] [Crossref] 
  15. Lucena, R., Almeida, N., & Simões, P. (2026). Physiological impact of personal protective equipment in distinct thermal environments. In O. Gervasi, B. Murgante, C. Garau, Y. Karaca, M. N. F. Lago, F. Scorza & A. C. Braga (Eds.), Computational science and its applications – ICCSA 2025 Workshops. ICCSA 2025. Lecture Notes in Computer Science, vol 15888. Springer, Cham. https://doi.org/10.1007/978-3-031-97596-7_7 [Google Scholar] [Crossref] 
  16. Malizia, A., McGovern, J., Sarigiannis, D., Karakitsios, S., Anastas, P. T., Ludovici, G. M., Manenti, G., & Vasiliou, V. (2025). Integrating the exposome framework in CBRNe risk assessment: A holistic approach to chemical, biological, radiological, nuclear, and explosive threats. The European Physical Journal Plus, 140, 1103. https://doi.org/10.1140/epjp/s13360-025-07030-4 [Google Scholar] [Crossref] 
  17. Nazari, S., Sharififar, S., Marzaleh, M. A., Zargar, S., Azarmi, S., & Shahrestanaki, Y. A. (2023). Structural elements and requirements in forming prehospital health response teams in response to chemical, biological, radiation, and nuclear incidents (CBRN): A comparative review study. Disaster Medicine and Public Health Preparedness, 17, e300. https://doi.org/10.1017/dmp.2022.259 [Google Scholar] [Crossref] 
  18. Nemeth, C., Sedehi, J., Rule, G., Di Pietrantonio, J., Laufersweiler, D., Keeney, N., & Clark, R. (2024). Decision support for CBRN avoid and protect missions. Cognition, Technology & Work, 26, 375–384. https://doi.org/10.1007/s10111-024-00767-5 [Google Scholar] [Crossref] 
  19. Qzih, E. S., & Ahmad, M. M. (2024). Hospital-based preparedness measures for CBRNE disasters: A systematic review. Environmental Health Insights, 18, 1-12. https://doi.org/10.1177/11786302241288859 [Google Scholar] [Crossref] 
  20. Razak, S., Hignett, S., Barnes, J., & Hancox, G. (2023). The standardization of the emergency department response to chemical, biological, radiological, and nuclear (CBRN) events: Human factors/ergonomics approach. Disaster Medicine and Public Health Preparedness, 17, e487. https://doi.org/10.1017/dmp.2023.148 [Google Scholar] [Crossref] 
  21. Reason, J. (2000). Human error: Models and management. BMJ, 320(7237), 768–770. https://doi.org/10.1136/bmj.320.7237.768 [Google Scholar] [Crossref] 
  22. Regal, G., Pretolesi, D., Schrom-Feiertag, H., Puthenkalam, J., Migliorini, M., De Maio, E., Scarrone, F., Nadalin, M., Guarneri, M., Xerri, G. P., Di Giovanni, D., Tessari, P., Genna, F., D’Angelo, A., & Murtinger, M. (2023). Challenges in virtual reality training for CBRN events. Multimodal Technologies and Interaction, 7(9), 88. https://doi.org/10.3390/mti7090088 [Google Scholar] [Crossref] 
  23. Rimpler-Schmid, A., Trapp, R., Leonard, S., Kaunert, C., Dubucq, Y., Lefebvre, C., & Mohn, H. (2021). EU preparedness and responses to chemical, biological, radiological and nuclear (CBRN) threats. Policy Department for External Relations Directorate General for External Policies of the Union. Retrieved on March 8, 2024, from https://www.europarl.europa.eu/thinktank/en/document/EXPO_STU(2021)653645 [Google Scholar]
  24. Schubert, T., & Weidner, R. (2025). Physical support of soldiers during CBRN scenarios with exoskeletons. Applied Sciences, 15(19), 10763. https://doi.org/10.3390/app151910763 [Google Scholar] [Crossref] 
  25. Shabani, T., Jerie, S., & Shabani, T. (2024). A comprehensive review of the Swiss cheese model in risk management. Safety in Extreme Environments, 6, 43–57. https://doi.org/10.1007/s42797-023-00091-7 [Google Scholar] [Crossref] 
  26. Son, C. (2023). Disaster ergonomics: A human factors approach to address escalating challenges from disasters. Cognition, Technology & Work, 25, 325–344. https://doi.org/10.1007/s10111-023-00736-4 [Google Scholar] [Crossref] 
  27. Wiegmann, D. A., & Shappell, S. A. (2001). Human error analysis of commercial aviation accidents: Application of the Human Factors Analysis and Classification System (HFACS). Aviation, Space, and Environmental Medicine, 72(11), 1006–1016. [Google Scholar]
  28. Woodcock, W., & Au, Z. (2013). Human factors issues in the management of emergency response at high hazard installations. Journal of Loss Prevention in the Process Industries, 26(3), 547-557. https://doi.org/10.1016/j.jlp.2012.07.002 [Google Scholar] [Crossref] 
  29. Zavila, O. (2025). Human factors analysis and classification system-positive experience (HFACS-PE): New approaches to aviation accident and incident investigation. Journal of Loss Prevention in the Process Industries, 94, 105578. https://doi.org/10.1016/j.jlp.2025.105578 [Google Scholar] [Crossref]